【题目】已知圆: ,直线: .
(Ⅰ)求直线被圆所截得的弦长最短时的值及最短弦长;
(Ⅱ)已知坐标轴上点和点满足:存在圆上的两点和,使得,求实数的取值范围.
【答案】(Ⅰ);最短弦长为 (Ⅱ)的取值范围为
【解析】【试题分析】(1)先依据题设求出动直线经过的定点坐标,进而断定其位置在圆内,再依据圆心与该点连线垂直弦最短求出的值及最短弦长;(2)依据题设条件设两点和的坐标分别为, 进而借助求出,再由在圆上,得,由在圆上,
得,从而将问题转化为“圆: 与圆: 有交点”,最后建立不等式求出的取值范围为:
解:(Ⅰ)由,
得,
因为的取值是任意的实数
所以,
解得,
所以直线恒过定点.
又,所以点在圆内,
故当时,所截得的弦长最短,
由题知圆心,半径
所以,得,
所以由,
得,
所以圆心到直线的距离为
所以最短弦长为
(Ⅱ)设, ,
由
得,
则有
由在圆上,
得,
由在圆上,
得,
所以圆: 与圆: 有交点,
则有,
解得,
故的取值范围为.
科目:高中数学 来源: 题型:
【题目】已知直线l经过点,则
(1)若直线l与x轴、y轴的正半轴分别交于A、B两点,且△OAB的面积为4,求直线l的方程;
(2)若直线l与原点距离为2,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为[-1,5],部分对应值如下表,的导函数的图象如图所示,下列关于的命题:
-1 | 0 | 4 | 5 | |
1 | 2 | 2 | 1 |
①函数的极大值点为0,4;
②函数在[0,2]上是减函数;
③如果当时,的最大值是2,那么的最大值为4;
④当时,函数有4个零点.
其中正确命题的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知一个八面体各棱长均为1,四边形ABCD为正方形,则下列命题中不正确的是
A. 不平行的两条棱所在直线所成的角为或 B. 四边形AECF为正方形
C. 点A到平面BCE的距离为 D. 该八面体的顶点在同一个球面上
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的离心率,左、右焦点分别为, ,点满足: 在线段的中垂线上.
(Ⅰ)求椭圆的方程;
(Ⅱ)若斜率为()的直线与轴、椭圆顺次相交于点、、,且,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以原点为极点, 轴正半轴为极轴建立极坐标系,曲线, 极坐标方程分别为, .
(Ⅰ)和交点的极坐标;
(Ⅱ)直线的参数方程为(为参数),与轴的交点为,且与交于, 两点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某房屋开发公司根据市场调查,计划在2017年开发的楼盘中设计“特大套”、“大套”、“经济适
用房”三类商品房,每类房型中均有舒适和标准两种型号.某年产量如下表:
房型 | 特大套 | 大套 | 经济适用房 |
舒适 | 100 | 150 | |
标准 | 300 | 600 |
若按分层抽样的方法在这一年生产的套房中抽取50套进行检测,则必须抽取“特大套”套房10套, “大套”15套.
(1)求,的值;
(2)在年终促销活动中,奖给了某优秀销售公司2套舒适型和3套标准型“经济适用型”套房,该销售公司又从中随机抽取了2套作为奖品回馈消费者.求至少有一套是舒适型套房的概率;
(3)今从“大套”类套房中抽取6套,进行各项指标综合评价,并打分如下:
现从上面6个分值中随机的一个一个地不放回抽取,规定抽到数9.6或9.7,抽取工作即停止.记在抽取到数9.6或9.7所进行抽取的次数为,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数其中为常数.
(1)当函数的图象在点处的切线的斜率为1时,求函数在上的最小值; (2)若函数在区间上既有极大值又有极小值,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com