精英家教网 > 高中数学 > 题目详情

【题目】已知圆 ,直线 .

(Ⅰ)求直线被圆所截得的弦长最短时的值及最短弦长;

(Ⅱ)已知坐标轴上点和点满足:存在圆上的两点,使得,求实数的取值范围.

【答案】(Ⅰ);最短弦长为 (Ⅱ)的取值范围为

【解析】试题分析】(1)先依据题设求出动直线经过的定点坐标,进而断定其位置在圆内,再依据圆心与该点连线垂直弦最短求出的值及最短弦长;(2)依据题设条件设两点的坐标分别为 进而借助求出,再由在圆上,得,由在圆上,

,从而将问题转化为“圆: 与圆: 有交点”,最后建立不等式求出的取值范围为

解:(Ⅰ)由

因为的取值是任意的实数

所以

解得

所以直线恒过定点.

,所以点在圆内,

故当时,所截得的弦长最短,

由题知圆心,半径

所以,得

所以由

所以圆心到直线的距离为

所以最短弦长为

(Ⅱ)设

则有

在圆上,

在圆上,

所以圆: 与圆: 有交点,

则有

解得

的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线l经过点,则

1)若直线lxy轴的正半轴分别交于AB两点,且OAB的面积为4,求直线l的方程;

2若直线l与原点距离为2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为[-1,5],部分对应值如下表,的导函数的图象如图所示,下列关于的命题:

-1

0

4

5

1

2

2

1

①函数的极大值点为0,4;

②函数在[0,2]上是减函数;

③如果当时,的最大值是2,那么的最大值为4;

④当时,函数有4个零点.

其中正确命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知一个八面体各棱长均为1,四边形ABCD为正方形,则下列命题中不正确的是

A. 不平行的两条棱所在直线所成的角为 B. 四边形AECF为正方形

C. A到平面BCE的距离为 D. 该八面体的顶点在同一个球面上

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率,左、右焦点分别为 ,点满足: 在线段的中垂线上.

(Ⅰ)求椭圆的方程;

(Ⅱ)若斜率为)的直线轴、椭圆顺次相交于点,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点为极点, 轴正半轴为极轴建立极坐标系,曲线 极坐标方程分别为 . 

(Ⅰ)交点的极坐标;

(Ⅱ)直线的参数方程为为参数),轴的交点为,且与交于 两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)若在区间上具有相同的单调性,求实数的取值范围;

(2)若,且函数的最小值为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某房屋开发公司根据市场调查,计划在2017年开发的楼盘中设计“特大套”、“大套”、“经济适

用房”三类商品房,每类房型中均有舒适和标准两种型号.某年产量如下表:

房型

特大套

大套

经济适用房

舒适

100

150

标准

300

600

若按分层抽样的方法在这一年生产的套房中抽取50套进行检测,则必须抽取“特大套”套房10套, “大套”15套.

(1)求,的值;

(2)在年终促销活动中,奖给了某优秀销售公司2套舒适型和3套标准型“经济适用型”套房,该销售公司又从中随机抽取了2套作为奖品回馈消费者.求至少有一套是舒适型套房的概率;

(3)今从“大套”类套房中抽取6套,进行各项指标综合评价,并打分如下:

现从上面6个分值中随机的一个一个地不放回抽取,规定抽到数9.6或9.7,抽取工作即停止.记在抽取到数9.6或9.7所进行抽取的次数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中为常数.

(1)当函数的图象在点处的切线的斜率为1时,求函数上的最小值; (2)若函数在区间上既有极大值又有极小值,求的取值范围.

查看答案和解析>>

同步练习册答案