精英家教网 > 高中数学 > 题目详情
7.化简$\frac{sin2α-2co{s}^{2}α}{sin(α-\frac{π}{4})}$=2$\sqrt{2}$cosα.

分析 由三角形函数公式化简可得$\frac{sin2α-2co{s}^{2}α}{sin(α-\frac{π}{4})}$=$\frac{2cosα(sinα-cosα)}{\frac{\sqrt{2}}{2}(sinα-cosα)}$,约分可得.

解答 解:化简可得$\frac{sin2α-2co{s}^{2}α}{sin(α-\frac{π}{4})}$=$\frac{2sinαcosα-2co{s}^{2}α}{\frac{\sqrt{2}}{2}(sinα-cosα)}$
=$\frac{2cosα(sinα-cosα)}{\frac{\sqrt{2}}{2}(sinα-cosα)}$=2$\sqrt{2}$cosα,
故答案为:2$\sqrt{2}$cosα.

点评 本题考查三角函数的化简求值,涉及二倍角公式和和差角的三角函数公式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{m{x}^{2}+2}{3x+n}$是奇函数,且f(2)=$\frac{5}{3}$,
(1)求实数m和n的值;
(2)函数f(x)在区间[-2,-1]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.一质点做匀变速直线运动,第1秒内通过2米,第3秒内通过6米,试求:
(1)质点运动的加速度.
(2)在第6秒内的平均速度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知平面α,直线a、b,则下列说法中正确的个数是(  )
①若a?α,则a∥α;
②若a∥b,b?α,则a∥α;
③若a∥α,b∥α,则a∥b;
④若a与α内的任何一条直线都不相交,则a∥α.
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,PC切圆O于点C,割线PAB经过圆心O,弦CD⊥AB于点E.
(1)求证:PA•PB=PE•PO;
(2)若PC=4,CE=$\frac{12}{5}$,求圆O的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=-x3+ax2-1.
(1)若f(x)在区间(0,2)上单调递增,在区间(2,+∞)上单调递减,求a的值;
(2)若方程f(x)=ax2-12x-b有三个不同的实数解,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率与双曲线$\frac{y^2}{2}-\frac{x^2}{6}$=1的离心率互为倒数,且过点(-2,3).
(1)求椭圆C的方程;
(2)设椭圆C的左顶点为A,过点R(3,0)作与x轴不重合的直线l交椭圆于P,Q两点,连接AP,AQ并延长分别交直线x=$\frac{16}{3}$于M,N两点.试问直线MR,NR的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知x>0,y>0,且2x+3y=6,求xy的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=log2(x2-1)的定义域为(-∞,-1)∪(1,+∞).

查看答案和解析>>

同步练习册答案