精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=ax3+bx+c的图象过点(0,-16),且在x=1处的切线方程是y=4x-18.
(1)求函数y=f(x)的解析式;
(2)若直线为曲线y=f(x)的切线,且经过原点,求直线的方程及切点坐标;
(3)若函数g(x)=x3+x2-lnx,记F(x)=f(x)-g(x),求函数y=F(x)在区间$[\frac{1}{2},3]$上的最大值和最小值.

分析 (1)由题意直接得c,再由在x=1处的切线方程是y=4x-18,可得$\left\{\begin{array}{l}{f(1)=-14}\\{f′(1)=4}\end{array}\right.$,求解方程组得答案;
(2)设出切点坐标,求出函数在切点处的导数,写出直线方程点斜式,代入原点坐标求得答案;
(3)对y=F(x)求导,由导函数为0求出极值点,然后再求出端点处的函数值,比较大小后可得函数y=F(x)在区间$[\frac{1}{2},3]$上的最大值和最小值.

解答 解:(1)由题意:c=-16,
∵f′(x)=3ax2+b,切线过(1,-14),
∴$\left\{\begin{array}{l}f(1)=-14\\ f'(1)=4\end{array}\right.⇒\left\{\begin{array}{l}a+b-16=-14\\ 3a+b=4\end{array}\right.⇒\left\{\begin{array}{l}a=1\\ b=1\end{array}\right.$,
∴f(x)=x3+x-16;
(2)设切点$({x_0},{x_0}^3+{x_0}-16)$,
∵f′(x)=3x2+1,∴$f′({x}_{0})=3{{x}_{0}}^{2}+1$,
则切线方程:$y-{x_0}^3-{x_0}+16=(3{x_0}^2+1)(x-{x_0})$,
∵切线过原点,∴$-{x_0}^3-{x_0}+16=-3{x_0}^3-{x_0}⇒{x_0}=-2$,
即切点坐标为(-2,-26).
∴切线方程为y+26=13(x+2),整理得y=13x;
(3)$F(x)={x^3}+x-16-{x^3}-{x^2}+lnx=-{x^2}+x+lnx-16,x∈[\frac{1}{2},3]$,
则$F'(x)=-2x+1+\frac{1}{x}=-\frac{{2{x^2}-x-1}}{x}=-\frac{(x-1)(2x+1)}{x}>0$,
解得:x<1,
∴F(x)在[$\frac{1}{2}$,1]上为增函数,在[1,3]上为减函数,
则F(x)的极大值为F(1)=-16,
$F(\frac{1}{2})=-\frac{1}{4}+\frac{1}{2}+ln\frac{1}{2}-16=\frac{1}{4}-ln2-16$$>\frac{1}{4}-ln\sqrt{e}-16=-\frac{1}{4}-16$,
F(3)=-9+3+ln3-16=-6+ln3-16<-6+2-16=-20,
则$F(\frac{1}{2})>F(3)$.
∴F(x)max=F(1)=0,F(x)min=F(3)=-22+ln3.

点评 本题考查利用导数研究过曲线上某点处的切线方程,考查了利用导数求函数的最值,考查计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知a+b=2,则4a+4b的最小值为(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数y=x2-6x+8在[1,a]为减函数,则a的取值范围是(  )
A.a≤3B.1<a≤3C.a≥3D.0≤a≤3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C所对的边分别为a,b,c且csinB=$\sqrt{3}$bcosC=3.
(1)求角C;
(2)若△ABC的面积为9$\sqrt{3}$,求边c.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.椭圆$\frac{x^2}{25}+\frac{y^2}{9}=1$上的点M到焦点F1的距离是2,N是MF1的中点,则ON=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知递增等比数列{an},满足a1=1,且a2a4-2a3a5+a4a6=36.
(1)求数列{an}的通项公式;
(2)设bn=log3an+$\frac{1}{2}$,求数列{an2•bn}的前n项和Sn
(3)在(2)的条件下,令cn=$\frac{1}{{b}_{n}{b}_{n+1}{b}_{n+2}}$,{cn}的前n项和为Tn,若Tn>λ恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列函数中,是奇函数且在区间(0,1)内单调递减的函数是(  )
A.y=log${\;}_{\frac{1}{2}}$xB.$y=\frac{-1}{x}$C.y=-x3D.y=tanx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求下列函数的值域:
(1)y=-2cosx-1;
(2)y=$\frac{2-cosx}{2+cosx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,M为椭圆C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点,F1是它的下焦点,F1也是抛物线x2=-4y的焦点,直线MF1与椭圆C的另一个交点为N,满足$\overrightarrow{M{F}_{1}}$=$\frac{5}{3}$$\overrightarrow{{F}_{1}N}$
(1)求椭圆C的方程;
(2)若直线l:y=kx+m与椭圆C相交于A、B两点(A、B不是上下顶点),且满足AA2⊥BA2(A2为上顶点),求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

同步练习册答案