精英家教网 > 高中数学 > 题目详情
13.如图一个几何体的正视图和俯视图如图所示,其中俯视图为边长为2$\sqrt{3}$的正三角形,且圆与三角形内切,则该几何体的体积为$6\sqrt{3}+\frac{4π}{3}$.

分析 几何体是三棱柱与球的组合体,判断三棱柱的高及底面三角形的边长,计算球的半径,进而计算棱柱和球的体积,相加可得答案.

解答 解:由三视图知:几何体是三棱柱与球的组合体,
其中三棱柱的高为2,底面三角形的边长为2$\sqrt{3}$,故底面面积S=$\frac{\sqrt{3}}{4}×(2\sqrt{3})^{2}$=3$\sqrt{3}$,
故圆柱的体积V=2×3$\sqrt{3}$=6$\sqrt{3}$,
根据俯视图是一个圆内切于一个正三角形,球的半径R=$\frac{1}{3}$×2$\sqrt{3}$×$\frac{\sqrt{3}}{2}$=1,故球的体积为:$\frac{4π}{3}$
故组合体的体积为:$6\sqrt{3}+\frac{4π}{3}$,
故答案为:$6\sqrt{3}+\frac{4π}{3}$

点评 本题考查了由正视图与俯视图求体积,判断数据所对应的几何量及求得相关几何量的数据是解题的关键

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.点P是单位圆O外任意一点,过P点作圆O的两条切线,切点为A、B,则$\overrightarrow{PA}•\overrightarrow{PB}$的最小值为$2\sqrt{2}-3$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知f(x)=3x+4,若|f(x)-1|<a的必要条件是|x+1|<b(a,b>0),则a,b之间的关系是(  )
A.$a>\frac{b}{3}$B.$b<\frac{a}{3}$C.$a≤\frac{b}{3}$D.$b≥\frac{a}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数y=f(x)与y=($\frac{1}{2}$)x的图象关于直线y=x对称,则f(x2-2x-3)的单调递增区间为(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦点分别为F1(-c,0),F2(c,0).若椭圆上存在点P,使$\frac{{P{F_1}}}{{2P{F_2}}}=\frac{a}{c}$;则该椭圆离心率的范围是$[\frac{{-3+\sqrt{17}}}{2},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数$f(x)=a{x^3}+\frac{b}{x}$,若f(-2)=1,则f(2)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知定义在R上的奇函数f(x),当x∈(0,+∞)时的解析式为f(x)=-x2+4x-3.
(1)求这个函数在R上的解析式;
(2)作出f(x)的图象,并根据图象直接写出函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知椭圆$E:\frac{x^2}{4}+\frac{y^2}{b^2}=1(0<b<2)$的右焦点为F.短轴的一个端点为M,直线l:3x-4y=0,若点M到直线l的距离不小于$\frac{4}{5}$,则椭圆E的离心率的取值范围是(0,$\frac{\sqrt{3}}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若一等差数列前5项和为25,前10项和为100,则它的前15项的和为(  )
A.125B.200C.225D.275

查看答案和解析>>

同步练习册答案