精英家教网 > 高中数学 > 题目详情
已知函数=+bx,其中a>0,b>0,x∈(0,+∞),确定的单调区间,并证明在每个单调区间上的增减性.

      

证明:设0<x1<x2,则?

       f(x1)-f(x2)=(+bx1)-(+bx2)=(x2-x1)(-b).?

       当0<x1<x2时,则x2-x1>0,0<x1x2<,>b,?

       ∴f(x1)-f(x2)>0,?

       即f(x1)>f(x2).?

       ∴在(0, ]上是减函数.?

       当x2>x1时,则x2-x1>0,x1x2>,<b,??

       ∴f(x1)-f(x2)<0,?

       即f(x1)<f(x2).?

       ∴在[,+∞)上是增函数.?

       温馨提示:这里用了两个三段论的简化形式,都省略了大前提.第一个三段论所依据的大前提是减函数的定义,第二个三段论所依据的大前提是增函数的定义.小前提分别是在(0, ]上满足减函数定义和在[,+∞)上满足增函数定义,这是证明该题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=3ax2+bx-5a+b是偶函数,且其定义域为[6a-1,a],则a+b=(  )
A、
1
7
B、-1
C、1
D、7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
a+1
2
x2+bx+a(a,b∈R),且其导函数f′(x)的图象过原点.
(Ⅰ)当a=1时,求函数f(x)的图象在x=3处的切线方程;
(Ⅱ)若存在x<0,使得f′(x)=-9,求a的最大值;
(Ⅲ)当a>0时,求函数f(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京)已知函数f(x)=ax2+1(a>0),g(x)=x3+bx
(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a、b的值;
(2)当a2=4b时,求函数f(x)+g(x)的单调区间,并求其在区间(-∞,-1)上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•福建模拟)已知函数f(x)=(ax2+bx+c)ex在x=1处取得极小值,其图象过点A(0,1),且在点处切线的斜率为-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)设函数g(x)的定义域D,若存在区间[m,n]⊆D,使得g(x)在[m,n]上的值域也是[m,n],则称区间[m,n]为函数g(x)的“保值区间”.
(ⅰ)证明:当x>1时,函数f(x)不存在“保值区间”;
(ⅱ)函数f(x)是否存在“保值区间”?若存在,写出一个“保值区间”(不必证明);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-
b
x
-2lnx,f(1)=0

(1)若函数f(x)在其定域义内为单调函数,求实数a的取值范围;
(2)若函数f(x)的图象在x=1处的切线的斜率为0,且an+1=f′(
1
an+1
)-nan+1

①若a1≥3,求证:an≥n+2;
②若a1=4,试比较
1
1+a1
+
1
1+a2
+…+
1
1+an
2
5
的大小,并说明你的理由.

查看答案和解析>>

同步练习册答案