精英家教网 > 高中数学 > 题目详情
6.已知二次函数f(x)=ax2+bx+1(a,b∈R),若f(-1)=0,且对任意x均有f(x)≥0恒成立,则实数a=1.

分析 把函数f(x)=ax2+bx+1(a、b∈R)满足:f(-1)=0,代入可以求得a与b的关系式,再根据对任意实数x均有f(x)≥0成立,可以求出a与b的关系式;

解答 解:函数f(x)=ax2+bx+1(a、b∈R)满足:f(-1)=0,可得a-b+1=0,可得b=a+1
∵对任意实数x均有f(x)≥0成立,
∴ax2+bx+1=ax2+(a+1)x+1≥0,恒成立,
∴$\left\{\begin{array}{l}a>0\\△=(a+1)^{2}-4a≤0\end{array}\right.$,解得(a+1)2-4a=(a-1)2≤0,
∴a=1,b=2;
故答案为:1.

点评 此题主要考查二次函数的性质以及函数的恒成立问题,考查的知识点比较单一,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知角α的终边在直线3x+4y=0,则5sinα+5cosα+4tanα=-2或-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.计算:
(1)${C}_{3n}^{38-n}$+${C}_{n+21}^{3n}$的值;
(2)A${\;}_{1}^{1}$+2${A}_{2}^{2}$+3${A}_{3}^{3}$+…+n${A}_{n}^{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若关于x的不等式|x|+|x-1|>|x-a|对?x∈R恒成立,则a的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}与{bn}满足下列关系:a1=2a,an+1=$\frac{1}{2}$(an+$\frac{{a}^{2}}{{a}_{n}}$),bn=$\frac{{a}_{n}+a}{{a}_{n}-a}$(n∈N*),其中a>0.
(1)求数列{bn}的通项公式,并证明:$\frac{{a}_{n}-a}{{a}_{n+1}-a}$=${3}^{{2}^{n-1}}$+1;
(2)设Sn是数列{an}的前n项和,当n≥2时,与(n+$\frac{4}{3}$)a是否有确定的大小关系?若有,请加以证明;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若0<x<2,则x(2-x)的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知3sinα=2sinβ,3cosα+2cosβ=3,α,β∈(0,$\frac{π}{2}$),则α+2β=π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,圆柱轴截面ABCD是正方形,E是底面圆周上不同于A、B的一点,AF⊥DE于F.
(1)求证:AF⊥BD
(2)若圆柱的体积是三棱锥D-ABE的体积的3π倍,求直线DE与平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设正实数a,b,c及非负实数x,y满足条件a6+b6+c6=3,(x+1)2+y2≤2,求:I=$\frac{1}{2{a}^{3}x+{b}^{3}{y}^{2}}$+$\frac{1}{2{b}^{3}x+{c}^{3}{y}^{2}}$$\frac{1}{2{c}^{3}x+{a}^{3}{y}^{2}}$的最小值,并论证之.

查看答案和解析>>

同步练习册答案