精英家教网 > 高中数学 > 题目详情
15.如图,已知平面BCC1B1是圆柱的轴截面(经过圆柱的轴截面)BC是圆柱底面的直径,O为底面圆心,E为母线CC1的中点,已知AB=AC=AA1=4
(1)求证:B1O⊥平面AEO
(2)求二面角B1-AE-O的余弦值.

分析 (1)依题意可知,AA1⊥平面ABC,∠BAC=90°,建立空间直角坐标系A-xyz,利用向量法能证明B1O⊥平面AEO.
(2)求出平面AEO的法向量和平面B1AE的法向量,利用向量法能求出二面角B1-AE-F的余弦值.

解答 证明:(1)依题意可知,AA1⊥平面ABC,∠BAC=90°,
如图建立空间直角坐标系A-xyz,因为AB=AC=AA1=4,
则A(0,0,0),B(4,0,0),E(0,4,2),B1(4,0,4),C(0,4,0),O(2,2,0),(2分)
$\overrightarrow{{B}_{1}O}$=(-2,2,-4),$\overrightarrow{EO}$=(2,-2,-2),$\overrightarrow{AO}$=(2,2,0),(3分)
$\overrightarrow{{B}_{1}O}$•$\overrightarrow{EO}$=(-2)×2+2×(-2)+(-4)×(-2)=0,
∴$\overrightarrow{{B}_{1}O}$⊥$\overrightarrow{EO}$,∴B1O⊥EO,
$\overrightarrow{{B}_{1}O}•\overrightarrow{AO}$=(-2)×2+2×2+(-4)×0=0,∴$\overrightarrow{{B}_{1}O}$⊥$\overrightarrow{AO}$,∴B1O⊥AO,(5分)
∵AO∩EO=O,AO,EO?平面AEO,
∴B1O⊥平面AEO.(6分)
(2)由(1)知,平面AEO的法向量为$\overrightarrow{{B}_{1}O}$=(-2,2,-4),(7分)
设平面 B1AE的法向量为$\overrightarrow{n}$=(x,y,z),
$\overrightarrow{AE}=(0,4,2),\overrightarrow{{B}_{1}A}=(-4,0,-4=0$,
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AE}=2y+z=0}\\{\overrightarrow{n}•\overrightarrow{{B}_{1}A}=x+z=0}\end{array}\right.$,令x=2,则$\overrightarrow{n}$=(2,2,-2),(10分)
∴cos<$\overrightarrow{n},\overrightarrow{{B}_{1}O}$>=$\frac{\overrightarrow{n}•\overrightarrow{{B}_{1}O}}{|\overrightarrow{n}|•|\overrightarrow{{B}_{1}O}|}$=$\frac{6}{\sqrt{9}×\sqrt{24}}$=$\frac{\sqrt{6}}{6}$,
∴二面角B1-AE-F的余弦值为$\frac{\sqrt{6}}{6}$.(12分)

点评 本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知实数a>0,且函数$f(x)=\frac{{{2^x}-a}}{{{2^x}+a}}$为奇函数.判断函数f(x)的单调性,并用单调性的定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将函数f(x)=$\sqrt{3}$sin2x-cos2x的图象向左平移φ(0<φ<$\frac{π}{2}$)个单位长度后得到函数y=g(x)的图象,若g(x)≤|g($\frac{π}{6}$)|对x∈R恒成立,则函数y=g(x)的单调递减区间是(  )
A.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z)B.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z)
C.[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z)D.[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在数列{an}中,a1=2,2an+1=2an+1,则a2015的值是(  )
A.1009B.1008C.1010D.1011

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$cosα=\frac{3}{5}$,$α∈(\frac{3π}{2},2π)$,则$cos(α-\frac{π}{4})$=(  )
A.$\frac{{7\sqrt{2}}}{10}$B.$-\frac{{7\sqrt{2}}}{10}$C.$\frac{{\sqrt{2}}}{10}$D.$-\frac{{\sqrt{2}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)上一点到两焦点间的距离之和为2$\sqrt{2}$,直线4x-3y+3=0被以椭圆C的短轴为直径的圆M截得的弦长为$\frac{8}{5}$.
(1)求椭圆C的方程;
(2)若椭圆C上存在两个不同的点A,B,关于直线l:y=-$\frac{1}{k}$(x+$\frac{1}{2}$)对称.且:△AOB面积为$\frac{\sqrt{6}}{4}$,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知正四面体棱长为4$\sqrt{2}$,则此正四面体外接球的表面积为(  )
A.36πB.48πC.64πD.72π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知三条直线m,n,l,三个平面α,β,γ,下面说法正确的是(  )
A.$\left.\begin{array}{l}{α⊥γ}\\{β⊥γ}\end{array}\right\}$⇒α∥βB.$\left.\begin{array}{l}{m⊥l}\\{n⊥l}\end{array}\right\}$⇒m∥nC.$\left.\begin{array}{l}{m∥β}\\{l⊥m}\end{array}\right\}$⇒l∥βD.$\left.\begin{array}{l}{m∥n}\\{n⊥γ}\end{array}\right\}$⇒m⊥γ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,直三棱柱ABC-A1B1C1中,AC⊥AB,AB=2AA1,M是AB的中点,△A1MC1是等腰三角形,D为CC1的中点,E为BC上一点.
(1)若DE∥平面A1MC1,求$\frac{CE}{EB}$;
(2)求证:平面B1MC1⊥平面A1MC1

查看答案和解析>>

同步练习册答案