精英家教网 > 高中数学 > 题目详情
3.设函数f(x)=$\overrightarrow a$•$\overrightarrow b$,其中向量$\overrightarrow a$=(2cosx,1),$\overrightarrow b$=(cosx,$\sqrt{3}$sin2x).
(Ⅰ)求函数f(x)的最小正周期及单调增区间;
(Ⅱ)求函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{6}$]上的最大值和最小值.

分析 (Ⅰ)利用两个向量的数量积公式,三角恒等变换化简函数的解析式,再利用正弦函数的周期性和单调性求得函数f(x)的最小正周期及单调增区间.
(Ⅱ)利用正弦函数的定义域和值域求得函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{6}$]上的最值.

解答 解:(Ⅰ)∵函数f(x)=$\overrightarrow a$•$\overrightarrow b$=(2cosx,1)•(cosx,$\sqrt{3}$sin2x)=2cos2x+$\sqrt{3}$sin2x
=cos2x+$\sqrt{3}$sin2x+1=2sin(2x+$\frac{π}{6}$)+1,
∴函数f(x)的最小正周期为$\frac{2π}{2}$=π.
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,可得函数的增区间为[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.
(Ⅱ)在区间[-$\frac{π}{4}$,$\frac{π}{6}$]上,2x+$\frac{π}{6}$∈[-$\frac{π}{3}$,$\frac{π}{2}$],sin(2x+$\frac{π}{6}$)∈[-$\frac{\sqrt{3}}{2}$,1],f(x)∈[1-$\sqrt{3}$,3],
即函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{6}$]上的最大值为3,最小值为1-$\sqrt{3}$.

点评 本题主要考查两个向量的数量积公式,三角恒等变换,正弦函数的周期性和单调性、定义域和值域,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.某校100名学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间如下:
组号第一组第二组第三组第四组第五组
分组[50,60)[60,70)[70,80)[80,90)[90,100]
(Ⅰ)求图中a的值;
(Ⅱ)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,若将该样本看成一个总体,从中随机抽取2名学生,求其中恰有1人的分数不低于90分的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=|x-a|+|x+b|(a>0,b>0).
(Ⅰ)若a=1,b=2,解不等式f(x)≤5;
(Ⅱ)若f(x)的最小值为3,求$\frac{{a}^{2}}{b}$+$\frac{{b}^{2}}{a}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow a$与向量$\overrightarrow b$满足|$\overrightarrow a$|=3,|$\overrightarrow b$|=2,|$2\overrightarrow a+\overrightarrow b$|=2$\sqrt{13}$,则$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$\overrightarrow a$=(sin(x+$\frac{π}{3}$),sin(x-$\frac{π}{6}$)),$\overrightarrow b$=(cos(x-$\frac{π}{6}$),cos(x+$\frac{π}{3}$)),$\overrightarrow a$•$\overrightarrow b$=$\frac{5}{13}$,且x∈[-$\frac{π}{3}$,$\frac{π}{6}$],则sin2x的值为(  )
A.$\frac{{5\sqrt{3}+12}}{26}$B.$\frac{{5\sqrt{3}-12}}{26}$C.$\frac{{5+12\sqrt{3}}}{26}$D.$\frac{{5-12\sqrt{3}}}{26}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.$\root{3}{(lg50-1)^{3}}$-$\sqrt{(lg2-1)^{2}}$=(  )
A.2lg5B.0C.-1D.-2lg5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.$\frac{2sin20°tan70°-2sin40°}{sin35°}$=$\sqrt{6}-\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知F1、F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,点P是该双曲线上的任意一点,若△PF1F2的内切圆半径为r,则r的取值范围是(  )
A.(0,a)B.(0,b)C.(0,$\sqrt{{a}^{2}+{b}^{2}}$)D.(0,$\sqrt{ab}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左右焦点分别为F1,F2,e为双曲线的离心率,P是双曲线右支上的点,△PF1F2的内切圆的圆心为I,过F2作直线PI的垂线,垂足为B,则OB=a.

查看答案和解析>>

同步练习册答案