精英家教网 > 高中数学 > 题目详情

【题目】平面内动点P(x,y)与两定点A(-2, 0), B(2,0)连线的斜率之积等于,若点P的轨迹为曲线E,过点Q作斜率不为零的直线交曲线E于点

(I)求曲线E的方程

(II)求证:

(III)求面积的最大值.

【答案】(1) (2) 的面积最大为

【解析】试题分析:(1)由条件斜率之积等于,化简即可求出曲线方程;

(2)设方程为与椭圆联立,利用向量的数量积为零,即可证明;

(3)利用分割的方法求出三角形面积,利用二次函数求最值得到三角形面积的最值.

试题解析:

(I)设动点P坐标为,当时,由条件得:

,化简得

故曲线E的方程为 .

(II)斜率不为0,所以可设方程为与椭圆联立得: 所以,.

=

所以

=,这里

的面积最大为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M≥0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的一个上界.已知函数f(x)=1+a( x+( x , 若函数f(x)在[﹣2,1]上是以3为上界的有界函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+ (x≠0).
(1)判断并证明函数在其定义域上的奇偶性;
(2)判断并证明函数在(2,+∞)上的单调性;
(3)解不等式f(2x2+5x+8)+f(x﹣3﹣x2)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某港口船舶停靠的方案是先到先停.

(1)若甲乙两艘船同时到达港口,双方约定各派一名代表猜拳:从1,2,3,4,5中各随机选一个数,若两数之和为偶数,则甲先停靠;若两数之和为奇数,则乙先停靠,这种规则是否公平?请说明理由.

(2)根据以往经验,甲船将于早上到达,乙船将于早上到达,请应用随机模拟的方法求甲船先停靠的概率,随机数模拟实验数据参考如下:记 都是之间的均匀随机数,用计算机做了100次试验,得到的结果有12次满足,有6次满足

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 是奇函数.
(1)求实数a的值;
(2)判断函数f(x)的单调性,并给以证明;
(3)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆 的左右焦点分别为的,离心率为;过抛物线焦点的直线交抛物线于两点,当时, 点在轴上的射影为。连结并延长分别交两点,连接 的面积分别记为 ,设.

)求椭圆和抛物线的方程;

)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,五面体中,四边形是菱形, 是边长为2的正三角形,

(1)证明:

(2)若点在平面内的射影,求与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心在直线 上,与直线 相切,且截直线 所得弦长为6

(Ⅰ)求圆的方程

(Ⅱ)过点是否存在直线,使以被圆截得弦为直径的圆经过原点?若存在,写出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分层抽样是将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,组成一个样本的抽样方法;在《九章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱多少衰出之,问各几何?”其译文为:今有甲持560钱,乙持350钱,丙持180钱,甲、乙、丙三人一起出关,关税共100钱,要按照各人带钱多少的比例进行交税,问三人各应付多少税?则下列说法错误的是( )

A. 甲应付 B. 乙应付

C. 丙应付 D. 三者中甲付的钱最多,丙付的钱最少

查看答案和解析>>

同步练习册答案