精英家教网 > 高中数学 > 题目详情

【题目】设椭圆的右焦点为,离心率为,过点且与轴垂直的直线被椭圆截得的线段长为.

(1)求椭圆的方程;

(2)若上存在两点,椭圆上存在两个点满足: 三点共线, 三点共线且,求四边形的面积的最小值.

【答案】(1)(2)

【解析】试题分析:(1)由条件可得,又因此解方程组可得(2)由于,所以,因此利用韦达定理及弦长公式可得(用直线斜率表示),代入面积公式可得关于直线斜率的函数关系式,根据斜率取值范围可得面积最值,注意讨论直线斜率不存在的情形.

试题解析:(1)∵过焦点且垂直于长轴的直线被椭圆截得的线段长为.

离心率为

解得

椭圆的方程为

(2)当直线斜率不存在时,直线斜率为0,

此时

当直线斜率存在时,直线

联立,则

可设直线:

联立椭圆消去得,

,令

综上,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设数列{an}为等比数列,数列{bn}满足bn=na1+(n﹣1)a2+…+2an1+an , n∈N* , 已知b1=m, ,其中m≠0.
(1)求数列{an}的首项和公比;
(2)当m=1时,求bn
(3)设Sn为数列{an}的前n项和,若对于任意的正整数n,都有Sn∈[1,3],求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,g(x)=x2+2mx+
(1)用定义法证明f(x)在R上是增函数;
(2)求出所有满足不等式f(2a﹣a2)+f(3)>0的实数a构成的集合;
(3)对任意的实数x1∈[﹣1,1],都存在一个实数x2∈[﹣1,1],使得f(x1)=g(x2),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,已知曲线为参数),将上的所有点的横坐标、纵坐标分别伸长为原来的倍后得到曲线.以平面直角坐标系的原点为极点, 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线.

(1)试写出曲线的极坐标方程与曲线的参数方程;

(2)在曲线上求一点,使点到直线的距离最小,并求此最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知矩形四点坐标为A(0,-2),C(4,2),B(4,-2),D(0,2).

(1)求对角线所在直线的方程;

(2)求矩形外接圆的方程;

(3)若动点为外接圆上一点,点为定点,问线段PN中点的轨迹是什么,并求出该轨迹方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面 .

(1)设点的中点,求证: 平面

(2)线段上是否存在一点,使得直线与平面所成的角的正弦值为?若存在,试确定点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C所对的边分别为a,b,c.已知 bcosA=asinB. (Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 经过椭圆 的左右焦点,且与椭圆在第一象限的交点为,且三点共线,直线交椭圆 两点,且).

(1)求椭圆的方程;

(2)当三角形的面积取得最大值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:以点为圆心的圆与x轴交于点OA,与y轴交于点OB,其中O为原点.

(1)求证:△OAB的面积为定值; (2)设直线y=-2x+4与圆C交于点MN,若|OM|=|ON|,求圆C的方程.

查看答案和解析>>

同步练习册答案