精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的五面体中,四边形为菱形,且中点.

(Ⅰ)求证: 平面

(Ⅱ)若平面平面,求到平面的距离.

【答案】(Ⅰ)见解析;(Ⅱ) .

【解析】试题分析:(1中点,连接根据线面平行的判定推出导出平面,由线面平行的性质得到,进而得到四边形为平行四边形.所以,得到线面平行;(2)由(1)得平面,所以到平面的距离等于到平面的距离,由,可求得点面距.

解析:(Ⅰ)取中点,连接

因为分别为中点,所以,且

因为四边形为菱形,所以, 平面 平面

所以平面

因为平面平面 平面

所以,所以.

所以四边形为平行四边形.所以.

平面平面,所以平面

(Ⅱ)由(1)得平面,所以到平面的距离等于到平面的距离.

的中点,连接

因为四边形为菱形,且

所以 ,因为平面平面

平面平面,所以平面

因为,所以

所以

到平面的距离为,又因为

所以由,得,解得.

到平面的距离为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点为圆外一点,若圆上存在一点,使得,则正数的取值范围是____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的部分图象如图所示,则函数图象的一个对称中心可能为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若 都是从0,1,2,3,4五个数中任取的一个数,求上述函数有零点的概率;

(2)若 都是从区间上任取的一个数,求成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.

(1)设P是上的一点,且AP⊥BE,求∠CBP的大小;

(2)当AB=3,AD=2时,求二面角E-AG-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 ()的一个焦点为椭圆内一点,若椭圆上存在一点,使得,则椭圆的离心率的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,的直径,PA垂直于所在的平面,C是圆周上不同于AB的一动点.

1)证明:是直角三角形;

2)若,且当直线与平面所成角的正切值为时,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.

(1)求直方图的的值;

(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由.

(3)估计居民月用水量的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学进行自主招生时,需要进行逻辑思维和阅读表达两项能力的测试.学校对参加测试的200名学生的逻辑思维成绩、阅读表达成绩以及这两项的总成绩进行了排名.其中甲、乙、丙三位同学的排名情况如下图所示:

得出下面四个结论:

甲同学的逻辑排名比乙同学的逻辑排名更靠前

②乙同学的逻辑思维成绩排名比他的阅读表达成绩排名更靠前

③甲、乙、丙三位同学的逻辑思维成绩排名中,甲同学更靠前

④甲同学的阅读表达成绩排名比他的逻辑思维成绩排名更靠前

则所有正确结论的序号是_________.

查看答案和解析>>

同步练习册答案