精英家教网 > 高中数学 > 题目详情

如图所示,将一矩形花坛扩建成一个更大的矩形花坛,要求的延长线上,的延长线上,且对角线点.已知米,米。

(1)设(单位:米),要使花坛的面积大于32平方米,求的取值范围;

(2)若(单位:米),则当的长度分别是多少时,花坛的面积最大?并求出最大面积.

 

【答案】

(Ⅰ);(Ⅱ)花坛的面积最大27平方米,此时米,米   .

【解析】

试题分析:(Ⅰ)把表示后,再把矩形面积表示出来,解不等式可得;(Ⅱ)对(Ⅰ)中的函数解析式,以导数为工具,求出最大值.

试题解析:由于,则        

     4分

(1)由 得   ,

因为,所以,即

从而

长的取值范围是    8分

(2)令,则     11分

因为当时,,所以函数上为单调递减函数,

从而当取得最大值,即花坛的面积最大27平方米,

此时米,米       16分

考点:函数的应用、导数的应用.

 

练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年浙江省绍兴市高一下学期期中考试理科数学试卷(解析版) 题型:解答题

作为绍兴市2013年5.1劳动节系列活动之一的花卉展在镜湖湿地公园举行.现有一占地1800平方米的矩形地块,中间三个矩形设计为花圃(如图),种植有不同品种的观赏花卉,周围则均是宽为1米的赏花小径,设花圃占地面积为平方米,矩形一边的长为米(如图所示)

(1)试将表示为的函数;

(2)问应该如何设计矩形地块的边长,使花圃占地面积取得最大值.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省绍兴市高一下学期期中考试文科数学试卷(解析版) 题型:解答题

作为绍兴市2013年5.1劳动节系列活动之一的花卉展在镜湖湿地公园举行.现有一占地1800平方米的矩形地块,中间三个矩形设计为花圃(如图),种植有不同品种的观赏花卉,周围则均是宽为1米的赏花小径,设花圃占地面积为平方米,矩形一边的长为米(如图所示)

(1)试将表示为的函数;

(2)问应该如何设计矩形地块的边长,使花圃占地面积取得最大值.

 

查看答案和解析>>

同步练习册答案