精英家教网 > 高中数学 > 题目详情
10.如图1,ABCD为长方形,AB=3,AD=$\sqrt{2}$,E,F分别是边AB,CD上的点,且AE=CF=1,DE与AF相交于点G,将三角形ADF沿AF折起至ADF',使得D'E=1,如图2.
(1)求证:平面D'EG⊥ABCF平面;
(2)求三棱锥D'-BEG的体积.

分析 (1)在矩形中由已知可得,△ADF∽△EAD,则∠DAF=∠AED,得到AF⊥DE,在图2中可得AF⊥D′G,AF⊥GE,再由线面垂直的判定可得AF⊥平面D′GE,进一步得到平面D'EG⊥ABCF平面;
(2)由(1)可得D′E⊥平面ABCF,把三棱锥D'-BEG的体积转化为2倍D'-AEG的体积求解.

解答 (1)证明:在图1的直角三角形ADF和直角三角形EAD中,
∵$\frac{DF}{AD}=\frac{AD}{AE}$=$\sqrt{2}$,∴△ADF∽△EAD,则∠DAF=∠AED,
∵∠DAF+∠EAF=90°,∴∠AED+∠EAF=90°,则AF⊥DE;
在图2中,∴AF⊥D′G,AF⊥GE,
∵D′G∩GE=G,∴AF⊥平面D′GE,
∵AF?平面ABCF,∴平面D'EG⊥ABCF平面;
(2)解:∵$AD′=\sqrt{2}$,AE=1,D′E=1,
∴D′E⊥AE,
由(1)可知,AF⊥平面D′EG,∴AF⊥D′E,
∵AE∩AF=A,∴D′E⊥平面ABCF,
又EG=$\frac{1}{3}$ED=$\frac{\sqrt{3}}{3}$,∴AG=$\frac{\sqrt{6}}{3}$.
∴${S}_{△AEG}=\frac{1}{2}×\frac{\sqrt{3}}{3}×\frac{\sqrt{6}}{3}=\frac{\sqrt{2}}{6}$,
∴VD′-BEG=2VD′-AEG=$\frac{\sqrt{2}}{9}$.

点评 本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用等积法求多面体的体积,关键是注意折叠问题折叠前后的变量与不变量,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知双曲线C的渐近线方程为y=±$\frac{1}{2}$x,点(3,$\sqrt{2}$)在双曲线上.
(1)求双曲线C的方程;
(2)过点P(0,1)的直线l交双曲线C于A,B两点,交x轴于点Q(点Q与双曲线的顶点不重合),当$\overrightarrow{PQ}$=λ$\overrightarrow{QA}$=μ$\overrightarrow{QB}$,且λ•μ=-5时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知实数a>0,b>0,若2a+b=1,则$\frac{1}{a}+\frac{2}{b}$的最小值是(  )
A.$\frac{8}{3}$B.$\frac{11}{3}$C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.命题“?x∈R,x2>9”的否定是?x∈R,x2≤9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=a(x-1)-lnx(a为实数),g(x)=x-1,h(x)=$\left\{\begin{array}{l}g(x),f(x)<g(x)\\ f(x),f(x)≥g(x)\end{array}$.
(1)当a=1时,求函数f(x)=a(x-1)-lnx在点(1,f(1))处的切线方程;
(2)讨论函数f(x)的单调性;
(3)若h(x)=f(x),求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$a={5^{{{log}_3}3.4}},b={5^{{{log}_4}3.6}},c={(\frac{1}{5})^{{{log}_3}0.3}}$,则(  )
A.c>a>bB.b>a>cC.b>a>cD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1与曲线$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1的(  )
A.实轴长相等B.离心率相等C.范围相同D.渐近线相同

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.某几何体的三视图如图所示,则该几何体的体积是$\frac{π}{3}$+$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{1}{2}{x^2}$+alnx-bx,a,b为实数.
(1)当b=0时,求函数f(x)的值域;
(2)当a=b=-1时,若a∈(1,e],求证:对任意s,t∈[1,a]恒有|f(s)-f(t)|<1.

查看答案和解析>>

同步练习册答案