精英家教网 > 高中数学 > 题目详情

【题目】在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下: 表1:男生表2:女生

等级

优秀

合格

尚待改进

等级

优秀

合格

尚待改进

频数

15

x

5

频数

15

3

y


(1)从表二的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为合格的概率;
(2)由表中统计数据填写下边2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.

男生

女生

总计

优秀

非优秀

总计

参考数据与公式:
K2= ,其中n=a+b+c+d.
临界值表:

P(K2>k0

0.05

0.05

0.01

k0

2.706

3.841

6.635

【答案】
(1)解:设从高一年级男生中抽出m人,则 = ,m=25,

∴x=25﹣20=5,y=20﹣18=2,

表2中非优秀学生共5人,记测评等级为合格的3人为a,b,c,尚待改进的2人为A,B,

则从这5人中任选2人的所有可能结果为:(a,b)(a,c)(b,c)(A,B)(a,A),(a,B),(b,A)(,b,B),(c,A)(c,B),共10种.

设事件C表示“从表二的非优秀学生5人中随机选取2人,恰有1人测评等级为合格”,

则C的结果为:(a,A),(a,B),(b,A)(,b,B),(c,A)(c,B),共6种.

∴P(C)= = ,故所求概率为

男生

女生

总计

优秀

15

15

30

非优秀

10

5

15

总计

25

20

45


(2)解:∵1﹣0.9=0.1,p(k2>2.706)=0.10,

而K2= = = =1.125<2.706,

所以没有90%的把握认为“测评结果优秀与性别有关”.

思路点拨(1)由题意可得非优秀学生共5人,记测评等级为合格的3人为a,b,c,尚待改进的2人为A,B,则从这5人中任选2人的所有可能结果为10个,设事件C表示“从表二的非优秀学生5人中随机选取2人,恰有1人测评等级为合格”,则C的结果为6个,根据概率公式即可求解.(2)由2×2列联表直接求解即可


【解析】(1)由题意可得非优秀学生共5人,记测评等级为合格的3人为a,b,c,尚待改进的2人为A,B,则从这5人中任选2人的所有可能结果为10个,设事件C表示“从表二的非优秀学生5人中随机选取2人,恰有1人测评等级为合格”,则C的结果为6个,根据概率公式即可求解.(2)由2×2列联表直接求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题p:关于x的方程x2﹣ax+4=0有实根;命题q:关于x的函数y=2x2+ax+4在[3,+∞)上是增函数,若p∧q是真命题,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (其中为自然对数的底数, )

(1) 设函数,讨论函数的零点个数;

(2) 时,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线l的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ.
(1)把曲线C的极坐标方程化为直角坐标方程;
(2)设直线l与曲线C交于M,N两点,点A(1,0),求 + 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆x2+y2=2的切线l与轴的正半轴、轴的正半轴分别交于点A、B,当|AB|取最小值时,切线l的方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1 , 抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上各取两个点,其坐标分别是(3,一2 ),(一2,0),(4,一4),( ). (Ⅰ)求C1 , C2的标准方程;
(Ⅱ)是否存在直线L满足条件:①过C2的焦点F;②与C1交与不同的两点M,N且满足 ?若存在,求出直线方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知在正四棱锥中, 为侧棱的中点, 连接相交于点

(1)证明:

(2)证明:

(3)设,若质点从点沿平面与平面的表 面运动到点的最短路径恰好经过点求正四棱锥 的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的定义域为D,若存在闭区间 ,使得函数同时满足:

1内是单调函数;

2上的值域为,则称区间的“倍值区间”.

下列函数中存在“3倍值区间”的有_____.

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,随着我市经济的快速发展,政府对民生也越来越关注. 市区现有一块近似正三角形土地ABC(如图所示),其边长为2百米,为了满足市民的休闲需求,市政府拟在三个顶点处分别修建扇形广场,即扇形DBEDAGECF其中分别相切于点DE,且无重叠,剩余部分(阴影部分)种植草坪. 设BD长为x(单位:百米,草坪面积为S(单位:百米2).

(1)试用x分别表示扇形DAGDBE的面积,并写出x的取值范围;

(2)当x为何值时草坪面积最大?并求出最大面积.

查看答案和解析>>

同步练习册答案