精英家教网 > 高中数学 > 题目详情

【题目】定义在上的函数,若,有,则称函数为定义在上的非严格单增函数;若,有,则称函数为定义在上的非严格单减函数. .

(1)若函数为定义在上的非严格单增函数,求实数的取值范围.

(2)若函数为定义在上的非严格单减函数,试解不等式.

【答案】(1);(2)当时,不等式的解集为:;当时,不等式的解集为: .

【解析】试题分析:

(1)根据 三种情况去掉绝对值,然后结合非严格单增函数的定义确定实数的取值范围。(2)由(1)知,且.可得当时,不等式的解集为;当时,不等式的解集为.

试题解析:

(1)当时,

时,

时, .

因为为定义在上的非严格单增函数,

根据定义可得.

所以实数的取值范围

(2)因为函数为定义在上的非严格单减函数,

所以由(1)知,且.

所以当时,不等式的解集为

时,不等式的解集为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题中正确的是(
A. 的最小值是2
B. 的最小值是2
C. 的最小值是
D. 的最大值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,a,b,c分别为角A,B,C的对边,且4sin2 ﹣cos2A=
(1)求角A的大小;
(2)若BC边上高为1,求△ABC面积的最小值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点P在曲线 上,点Q在曲线y=ln(2x)上,则|PQ|最小值为( )
A.1﹣ln2
B.
C.1+ln2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是正方形, 底面 ,点 分别为棱 的中点。

(1)求证: 平面

(2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的一块长方体木料中,已知AB=BC=4,AA1=1,设E为底面ABCD的中心,且 (0≤λ≤ ),则该长方体中经过点A1、E、F的截面面积的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆Q过定点F(0,﹣1),且与直线y=1相切;椭圆N的对称轴为坐标轴,中心为坐标原点O,F是其一个焦点,又点(0,2)在椭圆N上.
(1)求动圆圆心Q的轨迹M的方程和椭圆N的方程;
(2)过点(0,﹣4)作直线l交轨迹M于A,B两点,连结OA,OB,射线OA,OB交椭圆N于C,D两点,求△OCD面积的最小值.
(3)附加题:过椭圆N上一动点P作圆x2+(y﹣1)2=1的两条切线,切点分别为G,H,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若函数的图像在点处的切线与直线平行,求实数的值;

(Ⅱ)讨论函数的单调性;

(Ⅲ)若在函数定义域内,总有成立,试求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一个圆锥的底面半径为2cm,高为6cm,其中有一个高为xcm的内接圆柱.

(1)试用x表示圆柱的侧面积;
(2)当x为何值时,圆柱的侧面积最大.

查看答案和解析>>

同步练习册答案