(本小题14分)
已知函数的图像如图所示,直线是其两条对称轴。
(1)求函数的解析式并写出函数的单调增区间;
(2)若,且,求的值。
(1)函数的单调增区间为
(2)
【解析】(1)由题意,,∴,
又,故,∴, ……………………2分
由,解得,
又,∴,∴。 ……………………5分
由知,
∴函数的单调增区间为。 ……………7分
(2)解法1:依题意得:,即, ……………8分
∵, ∴,
∴, ……………………10分
∵
∴。 ……………………14分
解法2:依题意得: ,得,① ………………9分
∵, ∴,
∴=, ……………………11分
由得-----------②
①+②得,
∴ ……………………14分
解法3:由得, ……………………9分
两边平方得,,
∵ ∴,
∴, ……………………11分
∴,又,∴,
∴。 ……………………14分
科目:高中数学 来源:2011届北京市东城区示范校高三第二学期综合练习数学文卷 题型:解答题
(本小题14分)已知函数.
(1)若,点P为曲线上的一个动点,求以点P为切点的切线斜率取最小值时的切线方程;
(2)若函数在上为单调增函数,试求的取值范围.
查看答案和解析>>
科目:高中数学 来源:2015届陕西省高一上学期期中考试数学试卷(解析版) 题型:解答题
(本小题14分)已知二次函数满足:,,且该函数的最小值为1.
⑴ 求此二次函数的解析式;
⑵ 若函数的定义域为= .(其中). 问是否存在这样的两个实数,使得函数的值域也为?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江西省协作体高三第三次联考文科数学试卷(解析版) 题型:解答题
(本小题14分)已知函数
(Ⅰ)若且函数在区间上存在极值,求实数的取值范围;
(Ⅱ)如果当时,不等式恒成立,求实数的取值范围;
(Ⅲ)求证:,…….
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江苏省高三上学期第一次调研考试数学试卷(实验班) 题型:解答题
(本小题14分)已知函数f(x)=,x∈[1,+∞
(1)当a=时,求函数f(x)的最小值
(2)若对任意x∈[1,+∞,f(x)>0恒成立,试求实数a的取值范围
(3)求f(x)的最小值
查看答案和解析>>
科目:高中数学 来源:2010-2011年福建省四地六校高二下学期第一次月考数学理卷 题型:解答题
(本小题14分)
已知函数.
(Ⅰ)若,求曲线在处切线的斜率;
(Ⅱ)求的单调区间;
(Ⅲ)设,若对任意,均存在,使得,求的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com