【题目】某化工厂在定期检修设备时发现生产管道中共有5处阀门()发生有害气体泄漏.每处阀门在每小时内有害气体的泄露量大体相等,约为0.01立方米.阀门的修复工作可在不停产的情况下实施.由于各阀门所处的位置不同,因此修复所需的时间不同,且修复时必须遵从一定的顺序关系,具体情况如下表:
泄露阀门 | |||||
修复时间 (小时) | 11 | 8 | 5 | 9 | 6 |
需先修复 好的阀门 |
在只有一个阀门修复设备的情况下,合理安排修复顺序,泄露的有害气体总量最小为( )
A.1.14立方米B.1.07立方米C.1.04立方米D.0.39立方米
科目:高中数学 来源: 题型:
【题目】已知a,b,c均为正数,设函数f(x)=|x﹣b|﹣|x+c|+a,x∈R.
(1)若a=2b=2c=2,求不等式f(x)<3的解集;
(2)若函数f(x)的最大值为1,证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题14分)在平面直角坐标系中,曲线C1的参数方程为 (a>b>0, 为参数),以Ο为极点,x轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,已知曲线C1上的点对应的参数.与曲线C2交于点.
(1)求曲线C1,C2的直角坐标方程;
(2),是曲线C1上的两点,求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某汽车制造厂制造了某款汽车.为了了解汽车的使用情况,通过问卷的形式,随机对50名客户对该款汽车的喜爱情况进行调查,如图1是汽车使用年限的调查频率分布直方图,如表2是该50名客户对汽车的喜爱情况.
表2
不喜欢该款汽车 | 喜欢该款汽车 | 总计 | |
女士 | 11 | ||
男士 | 23 | 30 | |
总计 |
(1)将表2补充完整,并判断能否在犯错误的概率不超过0.025的前提下认为是否喜欢该款汽车与性别有关;
(2)根据图中的数据,甲说:“中位数在组内”;乙说:“平均数大于中位数”;丙说:“中位数和平均数一样”,针对三位同学的说法,你认为哪种说法合理,给出说明.
附:.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某省即将实行新高考,不再实行文理分科.某校为了研究数学成绩优秀是否对选择物理有影响,对该校2018级的1000名学生进行调查,收集到相关数据如下:
(1)根据以上提供的信息,完成列联表,并完善等高条形图;
选物理 | 不选物理 | 总计 | |
数学成绩优秀 | |||
数学成绩不优秀 | 260 | ||
总计 | 600 | 1000 |
(2)能否在犯错误的概率不超过0.05的前提下认为数学成绩优秀与选物理有关?
附:
临界值表:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列有关线性回归分析的四个命题:
①线性回归直线必过样本数据的中心点();
②回归直线就是散点图中经过样本数据点最多的那条直线;
③当相关性系数时,两个变量正相关;
④如果两个变量的相关性越强,则相关性系数就越接近于.
其中真命题的个数为( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com