精英家教网 > 高中数学 > 题目详情
设函数f(x)=
2x,x≤0
log2x,x>0
,若对任意给定的t∈(1,+∞),都存在唯一的x∈R,满足f(f(x))=2a2t2+at,则正实数a的最小值是(  )
A、2
B、
1
2
C、
1
4
D、
1
8
考点:分段函数的应用
专题:函数的性质及应用
分析:此题的突破口在于如何才会存在唯一的x满足条件,结合f(x)的值域范围或者图象,易知只有在f(x)的自变量与因变量存在一一对应的关系时,即只有当f(x)>2时,才会存在一一对应.
解答: 解:根据f(x)的函数,我们易得出其值域为:R,
又∵f(x)=2x,(x≤0)时,值域为(0,1];
f(x)=log2x,(x>0)时,其值域为R,
∴可以看出f(x)的值域为(0,1]上有两个解,
要想f(f(x))=2a2t2+at,在t∈(1,+∞)上只有唯一的x∈R满足,
必有f(f(x))>1 (因为2a2t2+at>0),
所以:f(x)>2,
解得:x>4,
当 x>4时,x与f(f(x))存在一一对应的关系,
∴2a2t2+at>1,t∈(1,+∞),且a>0,
所以有:(2at-1)(at+1)>0,
解得:t>
1
2a
或者t<-
1
a
(舍去),
1
2a
≤1,
∴a≥
1
2

故选:B
点评:本题主要考查了分段函数的应用,本题关键是可以把2a2t2+at当作是一个数,然后在确定数的大小后再把它作为一个关于t的函数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若一个等差数列首项为0,公差为2,则这个等差数列的前20项之和为(  )
A、360B、370
C、380D、390

查看答案和解析>>

科目:高中数学 来源: 题型:

设i为虚数单位,则复数z=
1+i
i
在复平面内对应的点所在的象限是(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα是方程5x2-12x-9=0的根,且α为第三象限角,求值:
sin(
2
-α)tan2(2π-α)
cos(
π
2
+α)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(x+1)-x+1,则函数f(x)零点的个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)=
x(|x|+1),x<1
2x-2,x≥1
若直线y=a与函数f(x)的图象恰有两个公共点,则实数a的取值范围是(  )
A、(0,2)
B、[0,2)
C、(0,2]
D、[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知半径为2的圆C满足:①圆心在y轴的正半轴上;②它截x轴所得的弦长是2
3

(1)求圆C的方程;
(2)若直线l经过点P(2,-3),且与圆C相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合U=R,A={x|1≤x≤4},B={x|(x+2)(x-3)<0},C={x|m+1<x<2m-1}
(1)求A∪B,(CUA)∩B.
(2)若C⊆(A∪B),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,货轮在海上以35nmile/h的速度沿着方位角(从指北方向顺时针转到目标方向线的水平角)为148°的方向航行.为了确定船位,在B点观察灯塔A的方位角是126°,航行半小时后到达C点,观察灯塔A的方位角是78°.求货轮到达C点时与灯塔A的距离(精确到0.01nmile).

查看答案和解析>>

同步练习册答案