精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
2
2
,左、右焦点分别为F1、F2,点P(2,
3
)
,点F2在线段PF1的中垂线上.
(1)求椭圆C的方程;
(2)设直线l:y=kx+m与椭圆C交于M、N两点,直线F2M与F2N的倾斜角分别为α,β,且α+β=π,求证:直线l过定点,并求该定点的坐标.
分析:(1)根据椭圆的离心率求得a和c的关系,进而根据椭圆C的左、右焦点分别为F1(-c,0),F2(c,0)又点F2在线段PF1的中垂线上
推断|F1F2|=|PF2|,进而求得c,则a和b可得,进而求得椭圆的标准方程.
(2)设直线MN方程为y=kx+m,与椭圆方程联立消去y,设M(x1,y1),N(x2,y2),根据韦达定理可表示出x1+x2和x1x2,表示出直线F2M和F2N的斜率,由α+β=π可推断两直线斜率之和为0,把x1+x2和x1x2代入即可求得k和m的关系,代入直线方程进而可求得直线过定点.
解答:解:(1)由椭圆C的离心率e=
2
2
c
a
=
2
2
,其中c=
a2-b2

椭圆C的左、右焦点分别为F1(-c,0),F2(c,0)又点F2在线段PF1的中垂线上
∴|F1F2|=|PF2|,∴(2c
)
2
 
=(
3
)2+(2-c)2
解得c=1,a2=2,b2=1,
椭圆的方程为
x2
2
+y2=1

(2)由题意,知直线MN存在斜率,设其方程为y=kx+m.由
x2
2
+y2=1
y=kx+m

消去y,得(2k2+1)x2+4kmx+2m2-2=0.设M(x1,y1),N(x2,y2),
则△=(4km)2-4(2k2+1)(2m2-2)≥0
即2k2-m2+1≥0
x1+x2=-
4km
2k2+1
x1x2=
2m2-2
2k2+1
,且kF2M=
kx1+m
x1-1
kF2N=
kx2+m
x2-1

由已知α+β=π,得kF2M+kF2N=0,即
kx1+m
x1-1
+
kx2+m
x2-1
=0

化简,得2kx1x2+(m-k)(x1+x2-2m)=0
2k•
2m2-2
2k2+1
-
4km(m-k)
2k2+1
-2m=0
整理得m=-2k.
∴直线MN的方程为y=k(x-2),因此直线MN过定点,该定点的坐标为(2,0)
点评:本题主要考查了双曲线的标准方程.考查了学生对问题的综合分析和基本的运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案