精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|x2﹣1|+x2+kx.
(1)若对于区间(0,+∞)内的任意x,总有f(x)≥0成立,求实数k的取值范围;
(2)若函数f(x)在区间(0,2)内有两个不同的零点x1 , x2 , 求:
①实数k的取值范围;
的取值范围.

【答案】
(1)解:f(x)≥0|x2﹣1|+x2+kx≥0k≥﹣ ,x∈(0,+∞),

记g(x)=﹣ = ,易知g(x)在(0,1]上递增,在(1,+∞)上递减,

∴g(x)max=g(1)=﹣1,

∴k≥﹣1;


(2)解:①(ⅰ)0<x≤1时,方程f(x)=0化为kx+1=0,k=0时,无解;k≠0时,x=﹣

(ⅱ)1<x<2时,方程f(x)=0化为2x2+kx﹣1=0,x= ,而其中 ≤0,

故f(x)=0在区间(1,2)内至多有一解x=

综合(ⅰ)(ⅱ)可知,k≠0,且0<x≤1时,方程f(x)=0有一解x=﹣ ,故k≤﹣1;

1<x<2时,方程f(x)=0也仅有一解x= ,令1< <2,得﹣ <k<﹣1,

∴实数k的取值范围是﹣ <k<﹣1;

②方程f(x)=0的两解分别为x1=﹣ ,x2=

=﹣k+ =﹣k+ = =2x2∈(2,4).


【解析】(1)由f(x)≥0分离出参数k,得k≥﹣ ,x∈(0,+∞),记g(x)=﹣ ,则问题等价于k≥g(x)max , 由单调性可得g(x)max;(2)①(i)当0<x≤1时,方程f(x)=0为一次型方程,易判断k≠0时有一解;当1<x<2时,方程f(x)=0为二次方程,可求得两解,易判断其一不适合,令另一解大于1小于2,可得k的范围,综合可得结论;(ii)由①易知两零点x1 , x2 , 从而可表示出 ,化简可得为2x2 , 结合(ii)可得结论;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了增强环保意识,我校从男生中随机抽取了60人,从女生中随机抽取了50人参加环保知识测试,统计数据如下表所示:

优秀

非优秀

总计

男生

40

20

60

女生

20

30

50

总计

60

50

110


(1)试判断是否有99%的把握认为环保知识是否优秀与性别有关;
(2)为参加市里举办的环保知识竞赛,学校举办预选赛,已知在环保测试中优秀的同学通过预选赛的概率为 ,现在环保测试中优秀的同学中选3人参加预选赛,若随机变量X表示这3人中通过预选赛的人数,求X的分布列与数学期望.
附:K2=

P(K2≥k)

0.500

0.400

0.100

0.010

0.001

k

0.455

0.708

2.706

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=x2+bx+c(其中b,c为实常数).
(1)若b>2,且y=f(sinx)(x∈R)的最大值为5,最小值为﹣1,求函数y=f(x)的解析式;
(2)是否存在这样的函数y=f(x),使得{y|y=x2+bx+c,﹣1≤x≤0}=[﹣1,0],若存在,求出函数y=f(x)的解析式;若不存在,请说明理由.
(3)记集合A={x|f(x)=x,x∈R},B={x|f(f(x))=x,x∈R}.
①若A≠,求证:B≠
②若A=,判断B是否也为空集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】扬州市2016—2017学年度第一学期期末检测(本小题满分14分)

如图,矩形ABCD是一个历史文物展览厅的俯视图,点E在AB上,在梯形BCDE区域内部展示文物,DE是玻璃幕墙,游客只能在ADE区域内参观.在AE上点P处安装一可旋转的监控摄像头,为监控角,其中M、N在线段DE(含端点)上,且点M在点N的右下方.经测量得知:AD=6米,AE=6米,AP=2米,.记(弧度),监控摄像头的可视区域PMN的面积S平方米.

(1)求S关于的函数关系式,并写出的取值范围;(参考数据:

(2)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80mg/100mL(不含80)之间,属于酒后驾车;在80mg/100mL(含80)以上时,属于醉酒驾车.某市公安局交通管理部门在某路段的一次拦查行动中,依法检查了300辆机动车,查处酒后驾车和醉酒驾车的驾驶员共20人,检测结果如表:

酒精含量(mg/100mL)

[20,30)

[30,40)

[40,50)

[50,60)

[60,70)

[70,80)

[80,90)

[90,100)

人数

3

4

1

4

2

3

2

1


(1)绘制出检测数据的频率分布直方图(计算并标上选取的y轴单位长度,在图中用实线画出矩形框并用阴影表示),估计检测数据中酒精含量的众数
(2)求检测数据中醉酒驾驶的频率,并估计检测数据中酒精含量的中位数、平均数(请写出计算过程).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017辽宁庄河市四模如图,四棱锥,底面是矩形,平面 平面,是边长为的等边三角形, ,的中点.

(1)求证: 平面

(2)点 ,且满足 ,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017四川宜宾二诊】如甲图所示,在矩形中, 的中点,将沿折起到位置,使平面平面,得到乙图所示的四棱锥

求证: 平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中国谜语大会》是中央电视台科教频道的一档集文化、益智、娱乐为一体的大型电视竞猜节目,目的是为弘扬中国传统文化、丰富群众文化生活.为选拔选手参加“中国谜语大会”,某地区举行了一次“谜语大赛”活动.为了了解本次竞赛选手的成绩情况,从中抽取了部分选手的分数(得分取正整数,满分为100分)作为样本进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100)的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出得分在[50,60),[90,100)的数据).
(1)求样本容量n和频率分布直方图中的x,y的值;
(2)分数在[80,90)的学生中,男生有2人,现从该组抽取三人“座谈”,求至少有两名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】Sn为等比数列的前n项和,已知S2=2,S3=-6.

(1)求的通项公式;

(2)求Sn,并判断Sn+1SnSn+2是否成等差数列

查看答案和解析>>

同步练习册答案