精英家教网 > 高中数学 > 题目详情

【题目】已知函数的部分图象如图所示.

(1)求的值;

(2)设的三个角所对的边依次为,如果,且,试求的取值范围;

(3)求函数的最大值.

【答案】(1);(2);(3).

【解析】

1)由图象有,可得的值,然后根据五点法作图可得,进而求出2)根据,可得,然后由行列式求出,再由正弦定理转化为,根据的范围求出的范围(3)将化简到最简形式,然后逐步换元,转化为利用导数求值问题.

1)由函数图象可得,解得,再根据五点法作图可得,解得

.

2

由正弦定理知

.

3

,因为,所以,则

,因为,所以,

,则

只需求出的最大值,

,则

时,,此时单调递增,当时,

此时单调递减,

.

函数的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,以原点为极点,轴的非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为,过点的直线(为参数)与曲线相交于两点.

(I)试写出曲线的直角坐标方程和直线的普通方程;

(Ⅱ)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(﹣10),B10),C01),直线yax+ba0)将ABC分割为面积相等的两部分,则b的取值范围是(  )

A.01B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某园林基地培育了一种新观赏植物,经过了一年的生长发育,技术人员从中抽取了部分植株的高度(单位:厘米)作为样本(样本容量为)进行统计,按照[50,60),[60,70),[70,80),

[80,90),[90,100]分组做出频率分布直方图,并作出样本高度的茎叶图(图中仅列出了

高度在[50,60),[90,100]的数据).

1)求样本容量和频率分布直方图中的

2)在选取的样本中,从高度在80厘米以上(含80厘米)的植株中随机抽取3株,设随机变量表示所抽取的3株高度在 [80,90) 内的株数,求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人承揽一项业务,需做文字标牌4个,绘画标牌5个,现有两种规格的原料,甲种规格每张3m2,可做文字标牌1个,绘画标牌2个,乙种规格每张2m2,可做文字标牌2个,绘画标牌1个,求两种规格的原料各用多少张,才能使总的用料面积最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(12分)已知集合A={x|-2<x<0},B={x|y=}

(1)求(RA)∩B;

(2)若集合C={x|a<x<2a+1}且CA,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设θ∈R,则“|θ﹣ |< ”是“sinθ< ”的(  )
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班50名学生在一次百米测试中,成绩全部介于13 s19 s之间,将测试结果分成如下六组:[13,14),[14,15),[15,16),[16,17),[17,18),[18,19].如图是按上述分组方法得到的频率分布直方图,设成绩小于17 s的学生人数占全班人数的百分比为x,成绩在[15,17)中的学生人数为y,则从频率分布直方图中可以分析出xy分别为 (   )

A. 90%,35B. 90%,45

C. 10%,35D. 10%,45

查看答案和解析>>

同步练习册答案