精英家教网 > 高中数学 > 题目详情

(本小题满分12分)[来源:学.科.网Z.X.X.K]

分别是椭圆的左、右焦点.

(1)若是该椭圆上的一个动点,求的取值范围;

(2)设过定点Q(0,2)的直线与椭圆交于不同的两点M、N,且∠为锐角(其中为坐标原点),求直线的斜率的取值范围.

(3)设是它的两个顶点,直线AB相交于点D,与椭圆相交于EF两点.求四边形面积的最大值.

 

【答案】

(1)

(2)

(3)的最大值为

【解析】解法一:易知

所以,设,则

.………………………………………………………………2分

(2)显然直线不满足题设条件,可设直线

联立,消去,整理得:………………………3分

得:………………………5分

又0°<∠MON<90°cos∠MON>0>0  ∴

,即  ∴

故由①、②得……………………………………………………7分

(3)解法一:根据点到直线的距离公式和①式知,点的距离分别为

.……………………………………………9分

,所以四边形的面积为=

…………………………………………………11分

 

,即当时,上式取等号.所以的最大值为.………12分

解法二:由题设,

,由①得,……………………9分

故四边形的面积为

…………………………………………………11分

 

时,上式取等号.所以的最大值为.…………………………………12分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案