精英家教网 > 高中数学 > 题目详情

【题目】一种室内植物的株高(单位:)与与一定范围内的温度(单位:)有,现收集了该种植物的组观测数据,得到如图所示的散点图:

现根据散点图利用建立关于的回归方程,令,得到如下数据:

的相关系数分别为,其中

1)用相关系数说明哪种模型建立关于的回归方程更合适;

2)(i)根据(1)的结果及表中数据,求关于的回归方程;

ii)已知这种植物的利润(单位:千元)与的关系为,当何值时,利润的预报值最大.

附:对于样本,其回归直线的斜率和截距的最小二乘估计公式分别为:

相关系数

【答案】1)用模型建立的回归方程更合适;(2)(i

ii)当温度为时,这种草药的利润的预报值最大.

【解析】

1)利用相关系数公式计算出相关系数的值,并比较的大小关系,选择相关系数绝对值较大的模型较好;

2)(i)将相关数据代入最小二乘法公式得出的值,可得出关于的回归方程;

ii)先得出关于的函数解析式,然后利用基本不等式求出的最大值,并注意等号成立的条件,从而解答该问题.

1)由相关系数公式可得

,所以用模型建立的回归方程更合适;

2)(i)由题意可得

因此,关于的回归方程为

ii)由题意知

由基本不等式可得,所以

当且仅当时等号成立,

所以当温度为时,这种草药的利润的预报值最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两家销售公司拟各招聘一名产品推销员,日工资方案如下: 甲公司规定底薪80元,每销售一件产品提成1; 乙公司规定底薪120元,日销售量不超过45件没有提成,超过45件的部分每件提成8.

1)请将两家公司各一名推销员的日工资 (单位: ) 分别表示为日销售件数的函数关系式;

2)从两家公司各随机选取一名推销员,对他们过去100天的销售情况进行统计,得到如下条形图.若将该频率视为概率,分别求甲、乙两家公司一名推销员的日工资超过125元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧面是边长为2的正方形,点是棱的中点.

1)证明:平面.

2)若三棱锥的体积为4,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知甲盒内有大小相同的个红球和个黑球,乙盒内有大小相同的个红球和个黑球.现从甲、乙两个盒内各任取个球.

1)求取出的个球中恰有个红球的概率;

2)设为取出的个球中红球的个数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】寒假即将到来,某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每在支出20元的各种费用(人工费,消耗费用等等).受市场调控,每个房间每天的房价不得高于340.设每个房间的房价每天增加x(x10的正整数倍)

(1)设宾馆一天的利润为W, Wx的函数关系式;

(2)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知常数,函数.

(1)讨论在区间上的单调性;

(2)存在两个极值点,,的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若上恒成立,求实数的取值范围;

2)若函数,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数同一周期中最高点的坐标为,最低点的坐标为.

1)求的值;

2)利用五点法作出函数在一个周期上的简图.(利用铅笔直尺作图,横纵坐标单位长度符合比例)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班共有学生45人,其中女生18人,现用分层抽样的方法,从男、女学生中各抽取若干学生进行演讲比赛,有关数据见下表(单位:人)

性别

学生人数

抽取人数

女生

18

男生

3

1)求

2)若从抽取的学生中再选2人做专题演讲,求这2人都是男生的概率.

查看答案和解析>>

同步练习册答案