精英家教网 > 高中数学 > 题目详情

【题目】为做好2022年北京冬季奥运会的宣传工作,组委会计划从某大学选取若干大学生志愿者,某记者在该大学随机调查了300名大学生,以了解他们是否愿意做志愿者工作,得到的数据如表所示:

愿意做志愿者工作

不愿意做志愿者工作

合计

男大学生

180

女大学生

45

合计

200

(Ⅰ)根据题意完成表格;

(Ⅱ)是否有的把握认为愿意做志愿者工作与性别有关?

附:

0.5

0.40

0.25

0.15

0.10

0.455

0.708

1.323

.072

2.706

【答案】(1)见解析(2)没有的把握

【解析】试题分析】(1)依据题设条件直接将数据填入2×2列联表;(2)先算出卡方系数,再与参考数据进行比对,进而做出判断:

(Ⅰ)

愿意做志愿者工作

不愿意做志愿者工作

合计

男大学生

125

55

180

女大学生

75

45

420

合计

200

100

300

(Ⅱ)∵的观测值

∴没有的把握认为愿意做志愿者工作与性别有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为选拔参加“全市高中数学竞赛”的选手,某中学举行了一次“数学竞赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为分)作为样本(样本容量为)进行统计.按照的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在的数据).

(1)求样本容和频率分布直方图中的值并求出抽取学生的平均分;

(2)在选取的样本中,从竞赛成绩在分以上(含)的学生中随机抽取名学生参加“全市中数学竞赛”求所抽取的名学生中至少有一人得分在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先后2次抛掷一枚骰子,将得到的点数分别记为

)求满足的概率;

)设三条线段的长分别为5,求这三条线段能围成等腰三角形(含等边三角形)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,直线的极坐标方程为 的交点为.

(1)判断点与曲线的位置关系;

(2)点为曲线上的任意一点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和

1)计算

2)猜想的表达式,并用数学归纳法证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

I)求证:恒成立;

II)若存在实数,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了对某课题进行研究,用分层抽样方法从三所高校的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)

高校

相关人数

抽取人数

A

18


B

36

2

C

54


)求

)若从高校抽取的人中选2人作专题发言,求这二人都来自高校的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中国好声音The Voice of China》是由浙江卫视联合星空传媒旗下灿星制作强力打造的大型励志专业音乐评论节目,于2012年7月13日正式在浙江卫视播出.每期节目有四位导师参加.导师背对歌手,当每位参赛选手演唱完之前有导师为其转身,则该选手可以选择加入为其转身的导师的团队中接受指导训练.已知某期《中国好声音》中,6位选手演唱完后,四位导师为其转身的情况如下表所示:

现从这6位选手中随机抽取两人考查他们演唱完后导师的转身情况.

1求选出的两人导师为其转身的人数和为4的概率;

2记选出的2人导师为其转身的人数之和为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应国家精准扶贫,产业扶贫的战略,进一步优化能源消费结构,某市决定在一地处山区的县推进光伏发电项目,在该县山区居民中随机抽取50户,统计其年用电量得到以下统计表,以样本的频率作为概率.

用电量(度)

户数

5

15

10

15

5

(1)在该县山区居民中随机抽取10户,记其中年用电量不超过600度的户数为,求的数学期望;

(2)已知该县某山区自然村有居民300户,若计划在该村安装总装机容量为300千瓦的光伏发电机组,该机组所发电量除保证该村正常用电外,剩余电量国家电网以元/度进行收购.经测算以每千瓦装机容量平均发电1000度,试估计该机组每年所发电量除保证正常用电外还能为该村创造直接收益多少元?

查看答案和解析>>

同步练习册答案