精英家教网 > 高中数学 > 题目详情
18.若α、β均为锐角,且$cosα=\frac{1}{17}$,$cos(α+β)=-\frac{47}{51}$,则cosβ=$\frac{1}{3}$.

分析 由题意和同角三角函数基本关系可得sinα和sin(α+β),代入cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα,计算可得.

解答 解:∵α、β均为锐角,且$cosα=\frac{1}{17}$,$cos(α+β)=-\frac{47}{51}$,
∴sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{12\sqrt{2}}{17}$,sin(α+β)=$\sqrt{1-co{s}^{2}(α+β)}$=$\frac{14\sqrt{2}}{51}$
∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα
=$-\frac{47}{51}×\frac{1}{17}$+$\frac{14\sqrt{2}}{51}×\frac{12\sqrt{2}}{17}$=$\frac{1}{3}$
故答案为:$\frac{1}{3}$

点评 本题考查两角和与差的三角函数公式,涉及同角三角函数基本关系,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知实数x,y满足条件$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,z=x+yi(i为虚数单位),则|z-1+2i|的最小值是(  )
A.$\frac{\sqrt{2}}{2}$B.2C.$\frac{1}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.数列{an}中的前n项和Sn=n2-2n+2,则通项公式an=$\left\{\begin{array}{l}{1,n=1}\\{2n-3,n>1}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.${a^{\frac{1}{2}}}+{a^{-\frac{1}{2}}}=5,则\frac{a}{{{a^2}+1}}$=$\frac{1}{23}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设一元二次不等式ax2+bx+1>0的解集为$\left\{{x\left|{-1<x<\frac{1}{3}}\right.}\right\}$,则ab的值是6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a}|=|{\overrightarrow b}|=1,\overrightarrow a•\overrightarrow b=0$,若向量$\overrightarrow c$满足$|{\vec c-\vec a-\vec b}|=1$,则$|{\overrightarrow c}|$的取值范围是(  )
A.[$\sqrt{2}$-1,$\sqrt{2}$+1]B.[$\sqrt{2}$-1,$\sqrt{2}$+2]C.[1,$\sqrt{2}$+1]D.[1,$\sqrt{2}$+2]1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知x,y∈[-$\frac{π}{4}$,$\frac{π}{4}$](a∈R),且x3+sinx-2a=0,4y3+sinycosy+a=0,则cos(x+2y)的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=$\frac{2sinx-1}{sinx+2}$的值域为[-3,$\frac{1}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.直线x+by+2a=0过点P(-1,1)且与直线(a-1)x+y+b=0垂直,那么a=0,b=1.

查看答案和解析>>

同步练习册答案