精英家教网 > 高中数学 > 题目详情
2.已知f′(x)为函数f(x)=$\frac{1}{3}a{x^3}+(3-a){x^2}$-7x+5(a>0)的导函数,当x∈[-2,2]时,|f′(x)|≤7恒成立,则f(x)=x3-7x+5.

分析 由于f′(x)=ax2+2(3-a)x-7,其对称轴方程为:x=$\frac{-2(3-a)}{2a}$=$\frac{a-3}{a}$,依题意可得到$\left\{\begin{array}{l}{|f′(-2)|≤7}\\{|f′(2)|≤7}\\{|f′(\frac{a-3}{a})|≤7}\end{array}\right.$,解之即可求得a的值,从而可得f(x)的解析式,

解答 解:∵f(x)=$\frac{1}{3}a{x^3}+(3-a){x^2}$-7x+5(a>0),
∴f′(x)=ax2+2(3-a)x-7,其对称轴方程为:x=$\frac{-2(3-a)}{2a}$=$\frac{a-3}{a}$,
∵当x∈[-2,2]时,|f′(x)|≤7恒成立,
∴$\left\{\begin{array}{l}{|f′(-2)|≤7}\\{|f′(2)|≤7}\\{|f′(\frac{a-3}{a})|≤7}\end{array}\right.$,即$\left\{\begin{array}{l}{|8a-19|≤7}\\{5≤7}\\{|a+\frac{9}{a}+1|≤7}\end{array}\right.$,即$\left\{\begin{array}{l}{\frac{3}{2}≤a≤\frac{13}{4}}\\{a+\frac{9}{a}≤6}\end{array}\right.$,即$\left\{\begin{array}{l}{\frac{3}{2}≤a≤\frac{13}{4}}\\{{(a-3)}^{2}≤0}\end{array}\right.$,解得:a=3.
∴f(x)=x3-7x+5,
故答案为:x3-7x+5.

点评 本题考查函数恒成立问题,依题意,得到$\left\{\begin{array}{l}{|f′(-2)|≤7}\\{|f′(2)|≤7}\\{|f′(\frac{a-3}{a})|≤7}\end{array}\right.$是关键,也是难点,考查等价转化思想与运算求解能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若圆(x-1)2+y2=25的弦AB被点P(2,1)平分,则直线AB的方程为(  )
A.2x+y-3=0B.x+y-3=0C.x-y-1=0D.2x-y-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知幂函数y=f(x)的图象经过点($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$),则lg[f(2)]+lg[f(5)]=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设a>0,函数f(x)=x+$\frac{{a}^{2}}{x}$,g(x)=x-lnx,若对任意的x2∈[$\frac{1}{e}$,1],存在${x_1}∈[\frac{1}{e},1]$,f(x1)≥g(x2)成立,则实数a的取值范围是[$\frac{1}{2}$,+∞)∪[$\frac{\sqrt{{e}^{2}-1}}{e}$,$\frac{1}{e}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=ax2+bx+c(a>b>c)的图象经过点A(m1,f(m1))和点B(m2,f(m2)),f(1)=0,若a2+(f(m1)+f(m2)•a+f(m1)•f(m2)=0,则(  )
A.b≥0B.b<0C.3a+c≤0D.3a-c<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.经测算,某型号汽车在匀速行驶过程中每小时耗油量y(升)与速度x(千米/每小时) (50≤x≤120)的关系可近似表示为:$y=\left\{\begin{array}{l}\frac{1}{75}({{x^2}-130x+4900}),x∈[{50,80})\\ 12-\frac{x}{60},x∈[{80,120}]\end{array}\right.$
(Ⅰ)该型号汽车速度为多少时,可使得每小时耗油量最低?
(Ⅱ)已知A,B两地相距120公里,假定该型号汽车匀速从A地驶向B地,则汽车速度为多少时总耗油量最少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知$|{\overrightarrow{OA}}|=|{\overrightarrow{OB}}|=1$,且$\overrightarrow{OA}•\overrightarrow{OB}=0$,点C在∠AOB内,$\overrightarrow{OA}$与$\overrightarrow{OC}$夹角为30°,若$\overrightarrow{OC}=m\overrightarrow{OA}+n\overrightarrow{OB}$,(m,n∈R),则$\frac{n}{m}$的值为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\sqrt{2}$C.$\sqrt{3}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知幂函数f(x)=xa的图象过点(2,4),则a=2.若b=loga3,则2b+2-b=$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.对于函数f(x),若存在区间A=[m,n],使得{y|y=f(x),x∈A}=A,则称函数f(x)为“可等域函数”,区间A为函数的一个“可等域区间”.给出下列四个函数:①f(x)=|x|;②f(x)=2x2-1;③f(x)=|1-2x|;④f(x)=log2(2x-2).其中存在唯一“可等域区间”的“可等域函数”的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案