精英家教网 > 高中数学 > 题目详情
(2012•漳州模拟)已知函数f(x)=ax+x2-xlna,(a>1).
(I)求证:函数f(x)在(0,+∞)上单调递增;
(Ⅱ)函数y=|f(x)-t|-1有三个零点,求t的值;
(Ⅲ)对?x1,x2∈[-1,1],|f(x1)-f(x2)|≤e-1恒成立,求a的取值范围.
分析:(I)求导函数,可得f'(x)=axlna+2x-lna=2x+(ax-1)lna,确定f'(x)>0,即可得函数f(x)在(0,+∞)上单调递增.
(Ⅱ)函数y=|f(x)-t|-1有三个零点,转化为f(x)=t±1共有三个根,即y=f(x)的图象与两条平行于x轴的直线y=t±1共有三个交点,根据t-1<t+1,可得f(x)=t+1有两个根,f(x)=t-1只有一个根,从而可求t的值;
(Ⅲ)问题等价于f(x)在[-1,1]的最大值与最小值之差≤e-1.由(Ⅱ)可知f(x)在[-1,0]上递减,在[0,1]上递增,f(x)的最小值为f(0)=1,最大值等于f(-1),f(1)中较大的一个,构造函数可得f(x)的最大值为f(1)=a+1-lna,从而问题转化为a-lna≤e-1,即可求得a的取值范围.
解答:(I)证明:求导函数,可得f'(x)=axlna+2x-lna=2x+(ax-1)lna,
由于a>1,∴lna>0,当x>0时,ax-1>0,∴f'(x)>0,故函数f(x)在(0,+∞)上单调递增.
(Ⅱ)解:令f'(x)=2x+(ax-1)lna=0,得到x=0,f(x),f'(x)的变化情况如下表:
x (-∞,0) 0 (0,+∞)
f'(x) - 0 +
f(x) 递减 极小值1 递增
因为函数y=|f(x)-t|-1有三个零点,所以f(x)=t±1共有三个根,即y=f(x)的图象与两条平行于x轴的直线y=t±1共有三个交点.
y=f(x)在(-∞,0)递减,在(0,+∞)递增,极小值f(0)=1也是最小值,当x→±∞时,f(x)→+∞.
∵t-1<t+1,∴f(x)=t+1有两个根,f(x)=t-1只有一个根.
∴t-1=fmin(x)=f(0)=1,∴t=2.(9分)
(Ⅲ)解:问题等价于f(x)在[-1,1]的最大值与最小值之差≤e-1.
由(Ⅱ)可知f(x)在[-1,0]上递减,在[0,1]上递增,
∴f(x)的最小值为f(0)=1,最大值等于f(-1),f(1)中较大的一个,
f(-1)=
1
a
+1+lna
,f(1)=a+1-lna,f(1)-f(-1)=a-
1
a
-2lna

g(x)=x-
1
x
-2lnx
,(x≥1),则g′(x)=1+
1
x2
-
2
x
=(
1
x
-1)2≥0
(仅在x=1时取等号)
g(x)=x-
1
x
-2lnx
是增函数,
∴当a>1时,g(a)=a-
1
a
-2lna>g(1)=0

即f(1)-f(-1)>0,∴f(1)>f(-1),
于是f(x)的最大值为f(1)=a+1-lna,
故对?x1,x2∈[-1,1],|f(x1)-f(x2)|≤|f(1)-f(0)|=a-lna,∴a-lna≤e-1,
当x≥1时,(x-lnx)′=
x-1
x
≥0
,∴y=x-lnx在[1,+∞)单调递增,
∴由a-lna≤e-1可得a的取值范围是1<a≤e.
点评:本题考查导数知识的运用,考查函数的单调性,考查函数的零点,考查恒成立问题,考查学生分析解决问题的能力,解题的关键是利用导数确定函数的最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•漳州模拟)复数z满足(1-2i)z=7+i,则复数z的共轭复数z=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•漳州模拟)已知△ABC中,角A、B、C成等差数列,且sinC=2sinA.
(Ⅰ)求角A、B、C;
(Ⅱ)数列{an}满足an=2n|cosnC|,前n项和为Sn,若Sn=340,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•漳州模拟)一个几何体的正视图、侧视图、俯视图都是如图所示正方形及其对角线,则该几何体的体积等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•漳州模拟)如图是某社区工会对当地企业工人月收入情况进行一次抽样调查后画出的频率分布直方图,其中第二组月收入在[1.5,2)千元的频数为300,则此次抽样的样本容量为(  )

查看答案和解析>>

同步练习册答案