精英家教网 > 高中数学 > 题目详情
给出定义:在数列{an}中,都有( p为常数),则称{an}为“等方差数列”.下列是对“等方差数列”的判断:
(1)数列{an}是等方差数列,则数列是等差数列;
(2)数列{(-1)n}是等方差数列;
(3)若数列{an}既是等方差数列,又是等差数列,则该数列必为常数数列;
(4)若数列{an}是等方差数列,则数列{akn}( k∈N*,k为常数)也是等方差数列.
其中正确命题序号为   
【答案】分析:(1)利用等方差和等差数列的定义去判断.(2)利用等方差的定义判断.(3)利用等方差数列和等差数列的定义.(4)先表示出{akn}的通项公式,然后利用等方差的定义进行判断.
解答:解:(1)若数列{an}是等方差数列,则有,则数列是公差为p的等差数列,所以(1)正确.
(2)若数列为{(-1)n}是,则,所以数列{(-1)n}是等方差数列,所以(2)正确.
(3)若数列{an}是等方差数列,则,即(an-an-1)(an+an-1)=p,
因为{an}是等差数列,所以an-an-1=d,所以(an+an-1)d=p,
1°当d=0时,数列{an}是常数列.
2°当d≠0时,,所以数列{an}是常数列,综上数列{an}是常数列,所以(3)正确.
(4)数列{an}中的项列举出来是,a1,a2,…,ak,…,a2k,…
数列{akn}中的项列举出来是,ak,a2k,…,a3k,…,
因为(ak+12-ak2)=(ak+22-ak+12)=(ak+32-ak+22)=…=(a2k2-a2k-12)=p
所以(ak+12-ak2)+(ak+22-ak+12)+(ak+32-ak+22)+…+(a2k2-a2k-12)=kp
所以(akn+12-akn2)=kp
所以{akn}(k∈N*,k为常数)是等方差数列.
故答案为:(1)(2)(3)(4).
点评:本题考查新定义以及等差数列的定义及其应用,解题时要注意掌握数列的概念,以及推理过程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出函数封闭的定义:若对于定义域D内的任意一个自变量x0,都有函数值f(x0)∈D,称函数y=f(x)在D上封闭.
(1)若定义域D1=(0,1),判断函数g(x)=2x-1是否在D1上封闭,并说明理由;
(2)若定义域D2=(1,5],是否存在实数a,使得函数f(x)=
5x-ax+2
在D2上封闭?若存在,求出a的取值范围;若不存在,请说明理由.
(3)利用(2)中函数,构造一个数列{xn},方法如下:对于给定的定义域D2=(1,5]中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述构造数列的过程中,如果xi(i=1,2,3,4…)在定义域中,构造数列的过程将继续下去;如果xi不在定义域中,则构造数列的过程停止.
①如果可以用上述方法构造出一个无穷常数列{xn},求实数a的取值范围.
②如果取定义域中任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•闵行区二模)给出下列四个命题:
①如果复数z满足|z+i|+|z-i|=2,则复数z在复平面的对应点的轨迹是椭圆.
②若对任意的n∈N*,(an+1-an-1)(an+1-2an)=0恒成立,则数列{an}是等差数列或等比数列.
③设f(x)是定义在R上的函数,且对任意的x∈R,|f(x)|=|f(-x)|恒成立,则f(x)是R上的奇函数或偶函数.
④已知曲线C:
x2
9
-
y2
16
=1
和两定点E(-5,0)、F(5,0),若P(x,y)是C上的动点,则||PE|-|PF||<6.
上述命题中错误的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
(1)已知函数f(x)=
1
2
x2   x≤2
log2(x+a)  x>2
在定义域内是连续函数,数列{an}通项公式为an=
1
an
,则数列{an}的所有项之和为1.
(2)过点P(3,3)与曲线(x-2)2-
(y-1)2
4
=1有唯一公共点的直线有且只有两条.
(3)向量
a
=(x2,x+1)
b
=(1-x,t)
,若函数f(x)=
a
b
在区间[-1,1]上是增函数,则实数t的取值范围是(5,+∞);
(4)我们定义非空集合A的真子集的真子集为A的“孙集”,则集合{2,4,6,8,10}的“孙集”有26个.
其中正确的命题有
(1)(2)(4)
(1)(2)(4)
(填序号)

查看答案和解析>>

科目:高中数学 来源:2013-2014学年山东省文登市高三上学期期中统考理科数学试卷(解析版) 题型:选择题

给出下列四个命题,其错误的是(     )

①已知是等比数列的公比,则“数列是递增数列”是“”的既不充分也不必要条件;

②若定义在上的函数是奇函数,则对定义域内的任意必有

③若存在正常数满足,则的一个正周期为

④函数图像关于对称.

A.②④                   B.④                    C.③                  D.③④

 

查看答案和解析>>

科目:高中数学 来源:2012届安徽省六校教育研究会高二素质测试理科数学 题型:填空题

给出下列命题:

①.在等差数列,且 ,则使数列前n项和 取最小值的n等于5;

的外接圆的圆心为O,半径为1,,且,则向量

在向量方向上的投影为;                                                                                   

 

③ 函数的值域是集合A,则函数的值域也是集合A;

④直线的倾斜角是

⑤若定义在区间D上的函数对于D上任意n个值总满足,则称为D上的凸函数,现已知

 

上凸函数,则锐角三角形△ABC中的最大值为

。其中正确命题的序号是_______。

 

查看答案和解析>>

同步练习册答案