精英家教网 > 高中数学 > 题目详情

【题目】动圆相外切,与相内切.

1)求动圆圆心的轨迹的方程;

2是动圆的半径最小时的圆,倾斜角为且过点的直线l相切,与轨迹交于两点,求的值.

【答案】12

【解析】

1)根据动圆 外切,与内切,由椭圆定义可知,点的轨迹是以为焦点的椭圆;

2)由(1)知:要使半径最小,则最小,易知

则可设直线方程为,根据直线与圆相切求出参数的值,即可得到直线方程,最后联立直线与椭圆方程,利用弦长公式计算可得.

解:(1)设动圆的半径为,则由题可知:

由椭圆定义可知点的轨迹是以为焦点,

长轴为6的椭圆,

的轨迹方程为:

2)由(1)知:要使半径最小,

最小,易知

由于,圆的方程为:

又由题可得直线的方程为:,即

到直线的距离为:(舍去)

直线的方程为:,联立椭圆方程:消去整理得:

,设

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】【选修4-4,坐标系与参数方程】

在直角坐标系中,直线的参数方程为t为参数),在以O为极点,轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为

)求直线的普通方程与曲线C的直角坐标方程;

)若直线轴的交点为P,直线与曲线C的交点为A,B,的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,对一切,点都在函数的图象上.

1)求,归纳数列的通项公式(不必证明).

2)将数列依次按1项、2项、3项、4项循环地分为,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为,求的值.

3)设为数列的前项积,且,求数列的最大项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2)若存在两个极值点,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4-4,坐标系与参数方程】

在直角坐标系中,直线的参数方程为t为参数),在以O为极点,轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为

)求直线的普通方程与曲线C的直角坐标方程;

)若直线轴的交点为P,直线与曲线C的交点为A,B,的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆C的方程为,设AB是过椭圆C中心O的任意弦,l是线段AB的垂直平分线,Ml上与O不重合的点.

1)求以椭圆的焦点为顶点,顶点为焦点的双曲线方程;

2)若,当点A在椭圆C上运动时,求点M的轨迹方程;

3)记Ml与椭圆C的交点,若直线AB的方程为,当面积取最小值时,求直线AB的方程;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,且椭圆过点

1)求椭圆的标准方程;

2)设直线交于两点,点在椭圆上,是坐标原点,若,判定四边形的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为实数,用表示不超过的最大整数,例如.对于函数,若存在,使得,则称函数是“和谐”函数.

(1)判断函数是否是“和谐”函数;(只需写出结论)

(2)设函数是定义在上的周期函数,其最小周期为,若不是“和谐”函数,求的最小值.

(3)若函数是“和谐”函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某芯片公司对今年新开发的一批5G手机芯片进行测评,该公司随机调查了100颗芯片,并将所得统计数据分为五个小组(所调查的芯片得分均在内),得到如图所示的频率分布直方图,其中

1)求这100颗芯片评测分数的平均数(同一组中的每个数据可用该组区间的中点值代替).

2)芯片公司另选100颗芯片交付给某手机公司进行测试,该手机公司将每颗芯片分别装在3个工程手机中进行初测。若3个工程手机的评分都达到11万分,则认定该芯片合格;若3个工程手机中只要有2个评分没达到11万分,则认定该芯片不合格;若3个工程手机中仅1个评分没有达到11万分,则将该芯片再分别置于另外2个工程手机中进行二测,二测时,2个工程手机的评分都达到11万分,则认定该芯片合格;2个工程手机中只要有1个评分没达到11万分,手机公司将认定该芯片不合格.已知每颗芯片在各次置于工程手机中的得分相互独立,并且芯片公司对芯片的评分方法及标准与手机公司对芯片的评分方法及标准都一致(以频率作为概率).每颗芯片置于一个工程手机中的测试费用均为300元,每颗芯片若被认定为合格或不合格,将不再进行后续测试,现手机公司测试部门预算的测试经费为10万元,试问预算经费是否足够测试完这100颗芯片?请说明理由.

查看答案和解析>>

同步练习册答案