精英家教网 > 高中数学 > 题目详情

【题目】已知函数函数.

1)若函数 的最小值为-16,求实数的值;

(2)若函数在区间上是单调减函数,求实数的取值范围;

3)当时,不等式的解集为求实数的取值范围.

【答案】(1)8或-32;(2;(3

【解析】试题分析:1)设,由,可得

化简 ,根据对称轴与的关系,求出函数的最小值

可得实数的值;

2)由函数的图象知:函数的减区间为

由此可得实数的取值范围;

3)不等式可以化为,即

则问题转化为当时,不等式的解集为

),讨论函数的单调性和最小值,即可求实数的取值范围

试题解析:

1)设,又,则

化简得 ,对称轴方程为

,即时,有,解得

,即时,有,解得(舍);

所以实数的值为8或-32

2)由函数的图象知:函数的减区间为

,则

则实数的取值范围为

3)不等式可以化为,即

因为当时,不等式的解集为

所以当时,不等式的解集为

),则函数在区间上单调增函数,在上单调减函数,所以,所以,从而,即所求实数的取值范围

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】 ,…, 是变量个样本点,直线是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是( )

A. 的相关系数在之间

B. 的相关系数为直线的斜率

C. 为偶数时,分布在两侧的样本点的个数一定相同

D. 所有样本点1,2,…, )都在直线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1) 判断并证明f(x)在定义域内的单调性;

(2)证明:当x>-1时,

(3)设当x≥0时, ,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 的左、右焦点分别为,上顶点为,过垂直的直线交轴负半轴于点,且恰好是线段的中点.

(1)若过三点的圆恰好与直线相切,求椭圆的方程;

(2)在(1)的条件下, 是椭圆的左顶点,过点作与轴不重合的直线交椭圆两点,直线分别交直线两点,若直线的斜率分别为,试问: 是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分) 设函数

1)当时,求函数的单调区间;

2)令,其图像上任意一点P处切线的斜率恒成立,求实数的取值范围;

3)当时,方程在区间内有唯一实数解,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】利用随机模拟方法计算y=x2y=4围成的面积时,利用计算器产生两组0~1之间的均匀随机数a1=RAND,b1=RAND,然后进行平移与伸缩变换,a=4a1-2,b=4b1,试验进行100,98次中落在所求面积区域内的样本点数为65,已知最后两次试验的随机数a1=0.3,b1=0.8a1=0.4,b1=0.3,那么本次模拟得出的面积的近似值为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(Ⅰ)若f(1)=0,求函数fx)的最大值;
(Ⅱ)令,讨论函数gx)的单调区间;
(Ⅲ)若a=2,正实数x1x2满足证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆关于直线对称的圆为.

(1)求圆的方程;

(2)过点作直线与圆交于两点, 是坐标原点,是否存在这样的直线,使得在平行四边形?若存在,求出所有满足条件的直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点

(Ⅰ)求椭圆的方程.

(Ⅱ)若 是椭圆上两个不同的动点,且使的角平分线垂直于轴,试判断直线的斜率是否为定值?若是,求出该值;若不是,说明理由.

查看答案和解析>>

同步练习册答案