精英家教网 > 高中数学 > 题目详情
13.已知椭圆中心E在坐标原点,焦点在坐标轴上,且经过A(-2,0)、B(2,0)、$C({1,\frac{3}{2}})$三点.
(1)求椭圆E的方程:
(2)若点D为椭圆E上不同于A、B的任意一点,F(-1,0),H(1,0),当△DFH内切圆的面积最大时,求内切圆圆心的坐标;
(3)若直线l:y=k(x-1)(k≠0)与椭圆E交于M、N两点,证明直线AM与直线BN的交点在直线x=4上.

分析 (1)设椭圆方程为mx2+my2=1(m>0,n>0),代入A,B,C的坐标,解方程可得m,n,进而得到椭圆方程;
(2)运用三角形的面积公式和内切圆半径与三边周长的关系,结合当D在椭圆上顶点时,面积最大,求得半径的最大值,可得圆心坐标;
(3)将直线l:y=k(x-1)代入椭圆E的方程$\frac{x^2}{4}+\frac{y^2}{3}=1$,运用韦达定理,求得AM的方程和BN的方程与x=4的交点,证明它们重合即可得证.

解答 解:(1)设椭圆方程为mx2+my2=1(m>0,n>0),
将A(-2,0)、B(2,0)、$C(1,\frac{3}{2})$代入椭圆E的方程,
得$\left\{\begin{array}{l}4m=1\\ m+\frac{9}{4}n=1\end{array}\right.$解得$m=\frac{1}{4},n=\frac{1}{3}$,
∴椭圆E的方程$\frac{x^2}{4}+\frac{y^2}{3}=1$;
(2)|FH|=2,设△DFH边上的高为h,
${S_{△DFH}}=\frac{1}{2}×2×h=h$,
设△DFH的内切圆的半径为R,因为△DFH的周长为定值6.
所以$\frac{1}{2}R×6=3R={S_{△DFH}}$,
当D在椭圆上顶点时,h最大为$\sqrt{3}$,
故S△DFH的最大值为$\sqrt{3}$,
于是R也随之最大值为$\frac{{\sqrt{3}}}{3}$,
此时内切圆圆心的坐标为$(0,\frac{{\sqrt{3}}}{3})$;
(3)证明:将直线l:y=k(x-1)代入椭圆E的方程$\frac{x^2}{4}+\frac{y^2}{3}=1$,
并整理.得(3+4k2)x2-8k2x+4(k2-3)=0.
设直线l与椭圆E的交点M(x1,y1),N(x2,y2),
由根与系数的关系,得${x_1}+{x_2}=\frac{1}{{3+4{k^2}}},{x_1}{x_2}=\frac{{4({k^2}-3)}}{{3+4{k^2}}}$.           
直线AM的方程为:$y=\frac{y_1}{{{x_1}+2}}(x+2)$,它与直线x=4的交点坐标为$p(4,\frac{{6{y_1}}}{{{x_1}+2}})$,
同理可求得直线BN与直线x=4的交点坐标为$Q(4,\frac{{2{y_2}}}{{{x_2}-2}})$.
下面证明P、Q两点重合,即证明P、Q两点的纵坐标相等.
∵y1=k(x1-1),y2=k(x2-1),
∴$\frac{{6{y_1}}}{{{x_1}+2}}-\frac{{2{y_2}}}{{{x_2}-2}}=\frac{{6k({x_1}-1)-({x_2}-2)-2k({x_2}-1)({x_1}+2)}}{{({x_1}+2)({x_2}-2)}}$
=$\frac{{2k[2{x_1}{x_2}-5({x_1}+{x_2})+8]}}{{({x_1}+2)({x_2}-2)}}=\frac{{2k[{\frac{{8({k^2}-3)}}{{3+4{k^2}}}-\frac{{40{k^2}}}{{3+4{k^2}}}+8}]}}{{({x_1}+2)({x_2}-2)}}=0$,
因此结论成立.
综上可知.直线AM与直线BN的交点住直线x=4上.

点评 本题考查椭圆的方程的求法,注意运用待定系数法,考查直线和椭圆方程联立,运用韦达定理,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知F1、F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,椭圆上一点M满足△MF1F2的周长为4+2$\sqrt{3}$,过椭圆上顶点与右顶点的直线与直线4x-2y+5=0垂直.
(1)求椭圆C的方程;
(2)若直线l交椭圆C于A,B两点,以AB为直径的圆过原点,求弦长|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.直线l过直线2x+y+8=0和直线x+y+3=0的交点,且垂直于直线4x+14y-1=0,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为F1、F2,且两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,椭圆与双曲线的离心率分别为e1、e2,则e1•e2+1的取值范围为(  )
A.(1,+∞)B.($\frac{4}{3}$,+∞)C.($\frac{6}{5}$,+∞)D.($\frac{10}{9}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),A,B是椭圆上关于原点对称的两点,P是椭圆上任意一点,且直线PA、PB的斜率分别为k1、k2,若椭圆的离心率为$\frac{{\sqrt{2}}}{2}$,则|k1•k2|=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知直线l:y=x+m与椭圆$C:\frac{x^2}{8}+\frac{y^2}{4}=1$有公共点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知A 为椭圆上一点,E,F 分别为椭圆的左右焦点,∠EAF=90°,设AE 的延长线交椭圆于B,又|AB|=|AF|,则椭圆的离心率e为(  )
A.$\sqrt{6}$-$\sqrt{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{5}-1}{2}$D.$\frac{\sqrt{5}-\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数y=x2与y=$(\frac{1}{2})^{x-2}$的图象交点为(x0,y0),则x0所在区间是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn=n2-2n-1,求这个数列的通项公式.

查看答案和解析>>

同步练习册答案