分析 (1)根据函数的奇偶性的定义即可讨论得到结论,
(2)先化简g(x),再根据导数和函数单调性的关系,求导分离参数,求出函数的最值,问题得以解决.
解答 解:(1)∵f(x)=ax2+(a-1)x+a,
∴f(-x)=ax2-(a-1)x+a,
若f(-x)=f(x),即ax2-(a-1)x+a=ax2+(a-1)x+a,
解得a=1,此时函数为偶函数,
若f(-x)=-f(x),即ax2-(a-1)x+a=-ax2-(a-1)x-a,
解得a=0,此时函数为奇函数,
当a≠1且a≠0时,函数为非奇非偶函数,
(2)∵$g(x)=f(x)+\frac{{1-({a-1}){x^2}}}{x}$=ax2+(a-1)x+a+$\frac{1}{x}$-(a-1)x=ax2+a+$\frac{1}{x}$,
∴g′(x)=2ax-$\frac{1}{x}$>0,在(2,3)上恒成立,
∴2a>$\frac{1}{{x}^{2}}$,
∴y=$\frac{1}{{x}^{2}}$在(2,3)上为减函数,
∴y>$\frac{1}{4}$,
∴2a≥$\frac{1}{4}$,
∴a≥$\frac{1}{8}$,
故a的取值范围为[$\frac{1}{8}$,+∞).
点评 本题主要考查了函数的单调性、奇偶性,利用了分类讨论的思想以及导数和函数的单调性的关系,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | ②③④ | B. | ①②③ | C. | ①③④ | D. | ①②③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=x2+1 | B. | y=log2|x| | ||
C. | y=$\left\{\begin{array}{l}{{e}^{x}(x≥0)}\\{{e}^{-x}(x<0)}\end{array}\right.$ | D. | y=|x+2| |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a2+b2>2ab | B. | $a+b≥2\sqrt{ab}$ | C. | $\frac{b}{a}+\frac{a}{b}$≥2 | D. | $\frac{1}{a}+\frac{1}{b}≥\frac{2}{{\sqrt{ab}}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com