精英家教网 > 高中数学 > 题目详情

已知函数f(x)=|log2(x+1)|,实数m、n在其定义域内,且m<n,f(m)=f(n).求证:
(1)m+n>0;
(2)f(m2)<f(m+n)<f(n2).

(1)证明:由f(m)=f(n),得|log2(m+1)|=|log2(n+1)|,即log2(m+1)=±log2(n+1),
log2(m+1)=log2(n+1),①
或log2(m+1)=log2.②
由①得m+1=n+1,与m<n矛盾,舍去.
由②得m+1=,即(m+1)(n+1)=1.③
∴m+1<1<n+1.∴m<0<n.∴mn<0.
由③得mn+m+n=0,m+n=-mn>0.

(2)证明:当x>0时,f(x)=|log2(x+1)|=log2(x+1)在(0,+∞)上为增函数.
由(1)知m2-(m+n)=m2+mn=m(m+n),且m<0,m+n>0,∴m(m+n)<0.
∴m2-(m+n)<0,0<m2<m+n.
∴f(m2)<f(m+n).
同理,(m+n)-n2=-mn-n2=-n(m+n)<0,
∴0<m+n<n2.∴f(m+n)<f(n2).
∴f(m2)<f(m+n)<f(n2).
分析:(1)由f(m)=f(n),得log2(m+1)=±log2(n+1),由此入手能够证明出m+n=-mn>0.
(2)当x>0时,f(x)=|log2(x+1)|=log2(x+1)在(0,+∞)上为增函数.由题设条件能够导出m(m+n)<0.所以f(m2)<f(m+n).同理,(m+n)-n2=-mn-n2=-n(m+n)<0,由此能够证明f(m2)<f(m+n)<f(n2).
点评:本题考查对数函数的性质和综合应用,解题时要认真审题,注意积累证明方法,提高解题能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案