精英家教网 > 高中数学 > 题目详情
14.设数列{an}满足:an≠0,a1=1,a2=2,an-1(an+1-an)=a2n,n≥2.
(1)设bn=$\frac{{a}_{n+1}}{{a}_{n}}$,求证:{bn}为等差数列;
(2)设cn=$\frac{n}{{a}_{n+1}}$,且{cn}的前n项和为Sn,证明:Sn<1.

分析 (1)由递推公式得到$\frac{{a}_{n+1}}{{a}_{n}}•\frac{{a}_{n-1}}{{a}_{n}}-\frac{{a}_{n-1}}{{a}_{n}}$=1,n≥2,由此能证明{bn}是首项为2,公差为1的等差数列.
(2)由(1)得$\frac{{a}_{n+1}}{{a}_{n}}$=2+(n-1)×1=n+1,从而利用累乘法得到cn=$\frac{n}{{a}_{n+1}}$=$\frac{n}{(n+1)!}$,由此利用放缩法能证明Sn<1.

解答 证明:(1)∵数列{an}满足:an≠0,a1=1,a2=2,an-1(an+1-an)=a2n,n≥2,
∴$\frac{{a}_{n-1}{a}_{n+1}}{{{a}_{n}}^{2}}$-$\frac{{a}_{n-1}{a}_{n}}{{{a}_{n}}^{2}}$=1,n≥2,
∴$\frac{{a}_{n+1}}{{a}_{n}}•\frac{{a}_{n-1}}{{a}_{n}}-\frac{{a}_{n-1}}{{a}_{n}}$=1,n≥2,
∴$\frac{{a}_{n+1}}{{a}_{n}}$-1=$\frac{{a}_{n}}{{a}_{n-1}}$,n≥2,
∴$\frac{{a}_{n+1}}{{a}_{n}}-\frac{{a}_{n}}{{a}_{n-1}}$=1,n≥2,
∵$\frac{{a}_{2}}{{a}_{1}}$=2,bn=$\frac{{a}_{n+1}}{{a}_{n}}$,
∴{bn}是首项为2,公差为1的等差数列.
(2)∵bn=$\frac{{a}_{n+1}}{{a}_{n}}$,{bn}是首项为2,公差为1的等差数列,
∴$\frac{{a}_{n+1}}{{a}_{n}}$=2+(n-1)×1=n+1,
∴${a}_{n}={a}_{1}×\frac{{a}_{2}}{{a}_{1}}×\frac{{a}_{3}}{{a}_{2}}×…×\frac{{a}_{n}}{{a}_{n-1}}$
=1×2×3×…×n=n!,
∵cn=$\frac{n}{{a}_{n+1}}$=$\frac{n}{(n+1)!}$,
∴{cn}的前n项和:
Sn=$\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+…+\frac{n}{(n+1)!}$
<$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+…+\frac{1}{{2}^{n}}$
=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$
=1-$\frac{1}{{2}^{n}}$<1,
∴Sn<1.

点评 本题考查等差数列的证明,考查数列的前n项和小于1的证明,是中档题,解题时要认真审题,注意构造法和放缩法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.计算.
(1)(1$\frac{7}{9}$)${\;}^{\frac{1}{2}}$-(-$\sqrt{5}$)0+($\frac{3}{2}$)-1
(2)$\frac{{5}^{2}•\root{5}{{5}^{3}}}{\sqrt{5}•\root{5}{{5}^{4}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若{an}是公比为2的等比数列,且其前4项和为1,则该数列的前8项和是(  )
A.2B.9C.16D.17

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.化简:sin4θ+cos2θ+sin2θcos2θ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.给出下列关于椭圆的真命题,试类比推理给出双曲线中类似的命题,并画出命题中的图.
(1)椭圆中以焦半径为直径的圆与长轴为直径的圆相切(此圆与椭圆内切);
(2)椭圆互相垂直的焦点弦倒数之和为常数$\frac{1}{|AB|}$+$\frac{1}{|CD|}$=$\frac{2-{e}^{2}}{2ep}$;
(3)设椭圆焦点弦AB的中垂线交长轴于点D,则|DF|与|AB|之比为离心率的一半(F为焦点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知sin($\frac{π}{3}$-α)=$\frac{1}{2}$,求cos2(α+$\frac{π}{3}$)•sin($\frac{2π}{3}$+α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设α、β为互不重合的平面,m、n为互不重合的直线,下列四个命题中所有正确命题的序号是①④.
①若m⊥α,n?α,则m⊥n;
②若m?α,n?α,m∥β,n∥β,则α∥β.
③若m∥α,n∥α,则m∥n.
④若α⊥β,α∩β=m,n?α,n⊥m,则n⊥β.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知定义域为(-∞,0)∪(0,+∞)的函数f(x)是偶函数,且f(2)=0,又函数y=$\frac{f(x)}{x}$在(0,+∞)上是减函数,则不等式f(x)>0的解集为(  )
A.(-2,0)∪(2,+∞)B.(-∞,-2)∪(2,+∞)C.(-2,0)∪(0,2)D.(-∞,-2)∪(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.下面给出的四个命题中:
①以抛物线y2=4x的焦点为圆心,且过坐标原点的圆的方程为(x-1)2+y2=1;
②点(1,2)关于直线L:X-Y+2=0对称的点的坐标为(0,3).
③命题“?x∈R,使得x2+3x+4=0”的否定是“?x∈R,都有x2+3x+4≠0”;
④命题:过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有2条.
其中是真命题的有①②③(将你认为正确的序号都填上).

查看答案和解析>>

同步练习册答案