精英家教网 > 高中数学 > 题目详情
已知直线l:x+y-6=0和圆M:x2+y2-2x-2y-2=0,点A在直线l上,若直线AC与圆M至少有一个公共点C,且∠MAC=30°,则点A的横坐标的取值范围是(  )
分析:设点A的坐标为(x0,6-x0),圆心M到直线AC的距离为d,则d=|AM|sin30°,由直线AC与⊙M有交点,知d=|AM|sin30°≤2,由此能求出点A的横坐标的取值范围.
解答:解:如图,设点A的坐标为(x0,6-x0),
圆心M到直线AC的距离为d,
则d=|AM|sin30°,
∵直线AC与⊙M有交点,
∴d=|AM|sin30°≤2,
∴(x0-1)2+(5-x02≤16,
∴1≤x0≤5,
故选B.
点评:本题考查直线和圆的方程的综合运用,是基础题.解题时要认真审题,注意数形结合思想的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l:x-y+4=0与圆C:(x-1)2+(y-1)2=2,则C上各点到l的距离的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:x-y+4=0与圆C:
x=1+2cosθ
y=1+2sinθ
,则C上各点到l的距离的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州一模)已知直线l:x+y=m经过原点,则直线l被圆x2+y2-2y=0截得的弦长是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:x-y+4=0与圆C:x2+y2-2x-2y=0,则圆C上各点到l的距离的最小值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•河北区一模)已知椭圆C的方程为 
x2
a2
+
y2
b2
=1 
(a>b>0),过其左焦点F1(-1,0)斜率为1的直线交椭圆于P、Q两点.
(Ⅰ)若
OP
+
OQ
a
=(-3,1)共线,求椭圆C的方程;
(Ⅱ)已知直线l:x+y-
1
2
=0,在l上求一点M,使以椭圆的焦点为焦点且过M点的双曲线E的实轴最长,求点M的坐标和此双曲线E的方程.

查看答案和解析>>

同步练习册答案