精英家教网 > 高中数学 > 题目详情
19.方程sinx-$\frac{x}{2014}$=0的零点的个数为(  )
A.1280B.1279C.1284D.1283

分析 根据方程和函数之间的关系转化为函数交点个数问题即可得到结论.

解答 解:由程sinx-$\frac{x}{2014}$=0得sinx=$\frac{x}{2014}$,
设函数y=f(x)=sinx,g(x)=$\frac{x}{2014}$,
当g(x)=1时,x=2014,
当g(x)=-1时,x=-2014,
∵320×2π≤2014<321×2π,每个周期含有2个交点,此时有321×2=642个,
∴当x<0,也有641个,
共有642+641=1283,
故选:D.

点评 本题考查方程的根与两个函数的交点的关系,体现了转化的数学思想.难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.下列说法中
①命题“每个指数函数都是单调函数”是全称命题,而且是真命题;
②若m?α,n?α,m,n是异面直线,那么n与α相交;
③设定点F1(0,-3),F2(0,3),动点P(x,y)满足条件|PF1|+|PF2|=2a(a>0),则动点P的轨迹是椭圆;
④若实数k满足0<k<9,则曲线$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9-k}$=1与曲线$\frac{{x}^{2}}{25-k}$-$\frac{{y}^{2}}{9}$=1有相同的焦点.
其中正确的为①④.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在极坐标系中,设圆C:ρ=4cosθ与直线l:θ=$\frac{π}{4}$(ρ∈R)交于A,B两点,求以AB为直径的圆的极坐标方程为(  )
A.ρ=2$\sqrt{2}$sin(θ+$\frac{π}{4}$)B.ρ=2$\sqrt{2}$sin(θ-$\frac{π}{4}$)C.ρ=2$\sqrt{2}$cos(θ+$\frac{π}{4}$)D.ρ=-2$\sqrt{2}$cos(θ-$\frac{π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知二次函数f(x)=ax2+bx(a≠0),并且满足f(1+x)=f(1-x),且方程f(x)-x=0有且只有一个根.
(1)求f(x)的解析式;
(2)若对任意的x∈[-2,2],不等式f(x)≤m-$\frac{3}{2}$x2恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设${a_n}=\frac{1}{n}sin\frac{nπ}{25}$,Sn=a1+a2+…+an,在S1,S2,…,S50中,正数的个数是(  )
A.25B.30C.40D.50

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.命题“?x∈R,x>sinx”的否定是?x∈R,x≤sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若f(2x)=3x2+1,则函数f(x)的解析式是$f(x)=\frac{3}{4}{x^2}+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.方程${log_2}({4^x}-5)=2+{log_2}({2^x}-2)$的解x=log23.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的焦点在x轴上.
(1)若离心率e=$\frac{4}{5}$,求椭圆的方程;
(2)若右焦点到直线3x-4y-4=0的距离为1,求椭圆方程.

查看答案和解析>>

同步练习册答案