精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)是定义在R上的函数,且图象关于点(0,1)对称;函数y=g(x)是函数y=f(x)的反函数,则g(a)+g(2-a)的值为(  )
A.2B.-2
C.0D.随a的取值而变化
∵函数y=f(x)是定义在R上的函数,
且图象关于点(0,1)对称,
函数y=g(x)是函数y=f(x)的反函数,
∴y=g(x)图象关于点(1,0)对称,
∵y=g(x)图象上的点(a,g(a))关于点(1,0)对称的点是(2-a,-g(a)),
∴g(a)+g(2-a)=g(a)+(-g(a))=0.
故选C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、已知函数y=f(x)是R上的奇函数且在[0,+∞)上是增函数,若f(a+2)+f(a)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

2、已知函数y=f(x+1)的图象过点(3,2),则函数f(x)的图象关于x轴的对称图形一定过点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是偶函数,当x<0时,f(x)=x(1-x),那么当x>0时,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的奇函数,当x>0 时,f(x)的图象如图所示,则不等式x[f(x)-f(-x)]≤0 的解集为
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象如图,则满足f(log2(x-1))•f(2-x2-1)≥0的x的取值范围为
(1,3]
(1,3]

查看答案和解析>>

同步练习册答案