精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 )的离心率为,以原点为圆心,椭圆的长半轴长为半径的圆与直线相切.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)已知点为动直线与椭圆的两个交点,问:在轴上是否存在定点,使得为定值?若存在,试求出点的坐标和定值;若不存在,请说明理由.

【答案】(;.

【解析】试题分析:(1)由,以原点为圆心,椭圆的长半轴为半径与直线相切,求出的值,由此可求出椭圆的方程;

2)由,由此利用韦达定理、向量的数量积,结合已知条件能求出在轴上存在点,使为定值,定点为

试题解析:()由,得,即

又以原点为圆心,椭圆的长半轴长为半径的圆为

且圆与直线相切,

所以,代入

.

所以椭圆的方程为.

)由,且

,则

根据题意,假设轴上存在定点,使得为定值,则有

要使上式为定值,即与无关,则应

,此时为定值,定点为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的上下两个焦点分别为,过点轴垂直的直线交椭圆两点, 的面积为,椭圆的离心率为

(1)求椭圆的标准方程;

(2)已知为坐标原点,直线轴交于点,与椭圆交于两个不同的点,若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ).

(1)若直线和函数的图象相切,求的值;

(2)当时,若存在正实数,使对任意都有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本公司计划2008年在甲,乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲,乙电视台的广告收费标准分别为500元/分钟和200元/分钟,规定甲,乙两个电视台为该公司所做的每分钟广告,能给公司事来的收益分别为0.3万元和0.2万元,问该公司如何分配在甲,乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知任意角α的终边经过点P(﹣3,m),且cosα=﹣
(1)求m的值.
(2)求sinα与tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下三个命题中:
①设有一个回归方程 =2﹣3x,变量x增加一个单位时,y平均增加3个单位;
②两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1;
③在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为0.8.
其中真命题的个数为(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|y=2x+1},B={y|y=x2+x+1,x∈R},则A∩B=(
A.{(0,1)∪(1,3)}
B.R
C.(0,+∞)
D.[ ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答题
(1)求函数y=2x+4 ,x∈[0,2]的值域;
(2)化简:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求函数f(x)的单调区间;
(2)证明:若a<5,则对任意 ,有

查看答案和解析>>

同步练习册答案