精英家教网 > 高中数学 > 题目详情
如图,曲线与曲线相交于四个点.
⑴ 求的取值范围;
⑵ 求四边形的面积的最大值及此时对角线的交点坐标.
(1)(2) 的最大值为16.,对角线交点坐标为.

试题分析:(1)通过直线与抛物线联立,借助判别式和韦达定理求解参数的范围;(2)根据图形的对称性,明确四边系ABCD的面积为,然后借助韦达定理将三角形面积表示为含有参数的表达式,最后化简通过构造函数, 利那用求导的方法研究最值. 分别求出对角线的直线方程,进而求交点坐标.
试题解析:(1) 联立曲线消去可得
,根据条件可得,解得.
(4分)
(2) 设

.
(6分)
,则,                 (7分)

则令
可得当时,的最大值为,从而的最大值为16.
此时,即,则.                               (9分)
联立曲线的方程消去并整理得
,解得
所以点坐标为点坐标为

则直线的方程为,                (11分)
时,,由对称性可知的交点在轴上,
即对角线交点坐标为.          (12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图示:已知抛物线的焦点为,过点作直线交抛物线两点,经过两点分别作抛物线的切线,切线相交于点.

(1)当点在第二象限,且到准线距离为时,求
(2)证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

极坐标系中椭圆C的方程为以极点为原点,极轴为轴非负半轴,建立平面直角坐标系,且两坐标系取相同的单位长度.
(Ⅰ)求该椭圆的直角标方程;若椭圆上任一点坐标为,求的取值范围;
(Ⅱ)若椭圆的两条弦交于点,且直线的倾斜角互补,
求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,经过点的动直线,与椭圆)相交于两点. 当轴时,,当轴时,
(Ⅰ)求椭圆的方程;
(Ⅱ)若的中点为,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线的焦点且倾斜角为的直线与抛物线在第一、四象限分别交于两点,则等于(     )
A.5B.4 C.3D. 2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的离心率为(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过直线上一点作圆的切线,若关于直线对称,则点到圆心的距离为     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的左焦点为     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y2= 2x的准线方程是(   )
A.y=B.y=-C.x=D.x=-

查看答案和解析>>

同步练习册答案