精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=2cos2x+ sin2x﹣1.
(1)求f(x)的最大值及此时的x值
(2)求f(x)的单调减区间
(3)若x∈[﹣ ]时,求f(x)的值域.

【答案】
(1)解:f(x)=2cos2x+ sin2x﹣1=cos2x+ =

当2x+ ,即 时,f(x)max=2


(2)解:由 ,得

∴f(x)的单调减区间为[ ],k∈Z


(3)解:

,得

∴﹣1≤f(x)≤2.

则f(x)的值域为[﹣1,2]


【解析】f(x)=2cos2x+ sin2x﹣1=cos2x+ = (1)当2x+ ,即 时,f(x)取得最大值;(2)由 ,得 ,即可求出f(x)的单调减区间;(3)由 ,得 ,即可求出f(x)的值域.
【考点精析】本题主要考查了正弦函数的单调性和三角函数的最值的相关知识点,需要掌握正弦函数的单调性:在上是增函数;在上是减函数;函数,当时,取得最小值为;当时,取得最大值为,则才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中.

(1)当时,求函数的值域;

(2)若对任意,均有,求的取值范围;

(3)当时,设,若的最小值为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据下列条件,分别求直线方程:
(1)经过点A(3,0)且与直线2x+y﹣5=0垂直;
(2)求经过直线x﹣y﹣1=0与2x+y﹣2=0的交点,且平行于直线x+2y﹣3=0的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+lnx(a∈R).

(1)当a=时,求f(x)在区间[1e]上的最大值和最小值;

(2)如果函数g(x),f1x),f2(x),在公共定义域D上,满足f1x)<gx)<f2(x),那么就称g(x)为f1x),f2(x)的“活动函数”.已知函数. 若在区间(1,+∞)上,函数f(x)是f1x),f2(x)的“活动函数”,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别为△ABC三个内角A,B,C的对边,c= asinC﹣ccosA.
(1)求A;
(2)若a=2,△ABC的面积为 ,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|25≤2x≤4},B={x|x2+2mx﹣3m2<0,m>0}.

(1)若m=2,求A∩B;

(2)若BA,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校高三年级有学生500人,其中男生300人,女生200人,为了研究学生的数学成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学分数,然后按性别分为男、女两组,再将两组学生的分数分成5组:[100,110),[110,120),[120,130),[130,140),[140,150]分别加以统计,得到如图所示的频率分布直方图.
附:K2=
(1)从样本中分数小于110分的学生中随机抽取2人,求两人恰好为一男一女的概率;
(2)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?

P(K2≥k0

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(1)证明:PB∥平面AEC;
(2)设AP=1,AD= ,三棱锥P﹣ABD的体积V= ,求二面角D﹣AE﹣C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位: )和年利润(单位:千元)的影响.对近8年的年宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.

表中.

(1)根据散点图判断哪一个适宜作为年销售量关于年宣传费的回归类型?(给出判断即可,不必说明理由)

(2)根据(1)的判断结果及表中数据,建立关于的回归方程;

(3)已知这种产品的利润的的关系为.根据(2)的结果回答下列问题:

(ⅰ)年宣传费时,年销售量及年利润的预报值是多少?

(ⅱ)年宣传费为何值时,年利润的预报值最大?

附:对于一组数据,其回归直线的的斜率和截距的最小二乘估计为.

查看答案和解析>>

同步练习册答案