精英家教网 > 高中数学 > 题目详情
在两条平行的直线AB和CD上分别取定一点M和N,在直线AB上取一定线段ME=a;在线段MN上取一点K,连接EK并延长交CD于F.试问K取在哪里△EMK与△FNK的面积之和最小?最小值是多少?
【答案】分析:先作两条平行直线的公垂线PQ,设出PQ、MN,然后令PK=x,则可表示出KQ,再根据△EMK∽△FNK,△MKP∽△NKQ,判断出,进而可求得NF,再表示出△EMK与△FNK的面积之和,根据均值不等式,求得面积之和最小时x的值,并求得面积的最小值.
解答:解:过点K作两条平行直线的公垂线PQ,
设PQ=l,MN=m,
令PK=x,则KQ=l-x
∴△EMK∽△FNK,

又∵△MKP∽△NKQ,

于是得到
从而△EMK与△FNK的面积之和为

=
=
=
=

A有最小值
点评:本题主要考查了解三角形的实际应用.考查了学生综合分析问题和基本的运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、设平面α∥平面β,A∈α,B∈β,C是AB的中点,当A、B分别在α、β内运动时,那么所有的动点C(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在两条平行的直线AB和CD上分别取定一点M和N,在直线AB上取一定线段ME=a;在线段MN上取一点K,连接EK并延长交CD于F.试问K取在哪里△EMK与△FNK的面积之和最小?最小值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:①分别和两条异面直线AB、CD同时相交的两条直线AC、BD一定是异面直线 ②同时与两条异面直线垂直的两直线不一定平行 ③斜线b在面α内的射影为c,直线a⊥c,则a⊥b ④异面直线a,b所成的角为60°,过空间一定点P,作直线L,使L与a,b 所成的角均为60°,这样的直线L有两条其中真命题是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设平面α∥平面βAαBβCAB的中点,当AB分别在αβ内运动时,那么所有的动点C(  )

A.不共面

B.当且仅当AB在两条相交直线上移动时才共

C.当且仅当AB在两条给定的平行直线上移动时才共面

D.不论AB如何移动都共面

查看答案和解析>>

同步练习册答案