精英家教网 > 高中数学 > 题目详情

【题目】2017年12月,针对国内天然气供应紧张的问题,某市政府及时安排部署,加气站采取了紧急限气措施,全市居民打响了节约能源的攻坚战.某研究人员为了了解天然气的需求状况,对该地区某些年份天然气需求量进行了统计,并绘制了相应的折线图.

(Ⅰ)由折线图可以看出,可用线性回归模型拟合年度天然气需求量 (单位:千万立方米)与年份 (单位:年)之间的关系.并且已知关于的线性回归方程是,试确定的值,并预测2018年该地区的天然气需求量;

(Ⅱ)政府部门为节约能源出台了《购置新能源汽车补贴方案》,该方案对新能源汽车的续航里程做出了严格规定,根据续航里程的不同,将补贴金额划分为三类,A类:每车补贴1万元,B类:每车补贴2.5万元,C类:每车补贴3.4万元.某出租车公司对该公司60辆新能源汽车的补贴情况进行了统计,结果如下表:

为了制定更合理的补贴方案,政府部门决定利用分层抽样的方式了解出租车公司新能源汽车的补贴情况,在该出租车公司的60辆车中抽取6辆车作为样本,再从6辆车中抽取2辆车进一步跟踪调查,求恰好有1辆车享受3.4万元补贴的概率.

【答案】(1)(2)

【解析】试题分析:(1)根据数据计算样本中心值,代入方程得到代入方程可得千万立方米;(2)根据古典概型的计算,列举出基本事件个数,从中找到符合条件的事件个数,两式作比即可.

解析:

(Ⅰ)如折线图数据可知

代入线性回归方程可得.

代入方程可得千万立方米.

(Ⅱ)根据分层抽样可知类,类,类抽取人数分别为1辆,2辆,3辆

分别编号为,.基本事件有

共15种

设“恰好有1辆车享受3.4万元补贴”为事件,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)是定义在R上的偶函数,对于xR,都有f(x+4)=f(x)+f(2)成立,当x1,x2[0,2]且x1≠x2时,都有 给出下列四个命题:

①f(﹣2)=0;

直线x=﹣4是函数y=f(x)的图象的一条对称轴;

函数y=f(x)在[4,6]上为减函数;

函数y=f(x)在(﹣8,6]上有四个零点.

其中所有正确命题的序号为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 上的点到椭圆一个焦点的距离的最大值是最小值的倍,且点在椭圆上.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点任作一条直线与椭圆交于不同于点的两点,与直线交于点,记直线的斜率分别为.试探究的关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年12月,针对国内天然气供应紧张的问题,某市政府及时安排部署,加气站采取了紧急限气措施,全市居民打响了节约能源的攻坚战.某研究人员为了了解天然气的需求状况,对该地区某些年份天然气需求量进行了统计,并绘制了相应的折线图.

(Ⅰ)由折线图可以看出,可用线性回归模型拟合年度天然气需示量 (单位:千万立方米)与年份 (单位:年)之间的关系.并且已知关于的线性回归方程是,试确定的值,并预测2018年该地区的天然气需求量;

(Ⅱ)政府部门为节约能源出台了《购置新能源汽车补贴方案》,该方案对新能源汽车的续航里程做出了严格规定,根据续航里程的不同,将补贴金额划分为三类,A类:每车补贴1万元,B类:每车补贴2.5万元,C类:每车补贴3.4万元.某出租车公司对该公司60辆新能源汽车的补贴情况进行了统计,结果如下表:

类型

车辆数目

10

20

30

为了制定更合理的补贴方案,政府部门决定利用分层抽样的方式了解出租车公司新能源汽车的补贴情况,在该出租车公司的60辆车中抽取6辆车作为样本,再从6辆车中抽取2辆车进一步跟踪调查.若抽取的2辆车享受的补贴金额之和记为“”,求的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

)函数的图象能否与轴相切?若能,求出实数a,若不能,请说明理由;

)求最大的整数,使得对任意,不等式

恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex-x2+a,x∈R的图象在x=0处的切线方程为y=bx.(e≈2.718 28)

(1)求函数f(x)的解析式;

(2)x∈R,求证:f(x)≥-x2+x;

(3)f(x)>kx对任意的x∈(0,+∞)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四棱锥中,底面为菱形, 为棱的中点,且.

(Ⅰ)求证:平面平面

(Ⅱ)当直线与底面角时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在极坐标系中曲线的极坐标方程为:,以极点为坐标原点,以极轴为轴的正半轴建立直角坐标系,曲线的参数方程为:(为参数),点.

(1)求出曲线的直角坐标方程和曲线的普通方程;

(2)设曲线与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有极值且导函数的极值点是的零点

(1)关于的函数关系式,并写出定义域;

(2)证明:

(3)这两个函数的所有极值之和不小于,求的取值范围

查看答案和解析>>

同步练习册答案