精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
某高校在2013年的自主招生考试成绩中随机抽取40名学生的笔试成绩,按成绩共分成五组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示,同时规定成绩在85分以上(含85分)的学生为“优秀”,成绩小于85分的学生为“良好”,且只有成绩为“优秀”的学生才能获得面试资格.

(1)求出第4组的频率;
(2)如果用分层抽样的方法从“优秀”和“良好” 的学生中选出5人,再从这5人中选2人,那么至少有一人是“优秀”的概率是多少?

(1)0.2(2)

解析试题分析:(Ⅰ)其它组的频率为(0.01+0.07+0.06+0.02)×5="0." 8,所以第四组的频率为0.2,…5分
(Ⅱ)依题意良好的人数为人,优秀的人数为
优秀与良好的人数比为3:2,所以采用分层抽样的方法抽取的5人中有优秀3人,良好2人,记从这5人中选2人至少有1人是优秀为事件M, 将考试成绩优秀的三名学生记为A,B,C,考试成绩良好的两名学生记为a,b 从这5人中任选2人的所有基本事件包括:AB,AC,BC,Aa,Ab,Ba,Bb,Ca,Cb,ab共10个基本事件        
事件M含的情况是:AB,AC,BC,Aa,Ab,Ba,Bb,Ca,Cb,共9个
所以      ………12分
考点:频率分布直方图与分层抽样古典概率
点评:频率分布直方图中各矩形面积和为1,每一个小矩形的面积代表该组的频率,分层抽样是各层按照所占样本容量的比例抽取,古典概率需要找到所有基本事件总数及满足某一条件的基本事件数目,然后求其比值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

我校某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题.

(1)求全班人数及分数在[80,90)之间的频数;
(2)估计该班的平均分数,并计算频率分布直方图中[80,90)间的矩形的高;
(3)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
某市的教育研究机构对全市高三学生进行综合素质测试,随机抽取了部分学生的成绩,得到如图所示的成绩频率分布直方图.

(I )估计全市学生综合素质成绩的平均值;
(II)若综合素质成绩排名前5名中,其中1人为某校的学生会主席,从这5人中推荐3人参加自主招生考试,试求这3人中含该学生会主席的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

从某校参加2012年全国高中数学联赛预赛的450名同学中,随机抽取若干名同学,将他们的成绩制成频率分布表,下面给出了此表中部分数据.

(1)根据表中已知数据,你认为在①、②、③处的数值分别为                        
(2)补全在区间 [70,140] 上的频率分布直方图;

(3)若成绩不低于100分的同学能参加决赛,那么可以估计该校大约有多少学生能参加决赛?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据。

x
3
4
5
6
y
2.5
3
4
4.5
(1)请根据上表提供的数据, y关于x的线性回归方程
(2)已知该厂技改前100吨甲产品生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(11分)为了调查某厂2000名工人生产某种产品的能力,随机抽查了位工人某天生产该产品的数量,产品数量的分组区间为,,频率分布直方图如图所示.已知生产的产品数量在之间的工人有6位.

(Ⅰ)求
(Ⅱ)工厂规定从生产低于20件产品的工人中随机的选取2位工人进行培训,则这2位工人不在同一组的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)为了研究化肥对小麦产量的影响,某科学家将一片土地划分成200个的小块,并在100个小块上施用新化肥,留下100个条件大体相当的小块不施用新化肥.下表1和表2分别是施用新化肥和不施用新化肥的小麦产量频数分布表(小麦产量单位:kg)
表1:施用新化肥小麦产量频数分布表

小麦产量





频数
10
35
40
10
5
表2:不施用新化肥小麦产量频数分布表
小麦产量




频数
15
50
30
5
(10)     完成下面频率分布直方图;

(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计施用化肥和不施用化肥的一小块土地的小麦平均产量;
(3)完成下面2×2列联表,并回答能否有99.5%的把握认为“施用新化肥和不施用新化肥的小麦产量有差异”
表3:
 
小麦产量小于20kg
小麦产量不小于20kg
合计
施用新化肥


 
不施用新化肥


 
合计
 
 

 
附:

0.050
0.010
0.005
0.001

3.841
6.635
7.879
10.828
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样方法(按A类,B类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(生产能力指一天加工的零件数).从A类工人中抽查结果和从B类工人中的抽查结果分别如下表1和表2
表1:

生产能力分组





人数
4
8

5
3
表2:
生产能力分组




人数
6
y
36
18
(1)先确定,再在答题纸上完成下列频率分布直方图。就生产能力而言,A类工人中个体间的差异程度与B类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)(注意:本题请在答题卡上作图)

(2)分别估计类工人和类工人生产能力的众数、中位数和平均数。(精确到0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了调查胃病是否与生活规律有关,在某地对岁以上的人进行了调查,结果是:患胃病者生活不规律的共人,患胃病者生活规律的共人,未患胃病者生活不规律的共260人,未患胃病者生活规律的共人.
(1)根据以上数据列出列联表.
(2)并判断岁以上的人患胃病与否和生活规律是否有关。

查看答案和解析>>

同步练习册答案