精英家教网 > 高中数学 > 题目详情
给出以下四个命题:
(1)对于任意的a>0,b>0,则有algb=blga成立;
(2)直线y=x•tanα+b的倾斜角等于α;
(3)在空间如果两条直线与同一条直线垂直,那么这两条直线平行;
(4)在平面将单位向量的起点移到同一个点,终点的轨迹是一个半径为1的圆.
其中真命题的序号是______.
(1)中,∵a>0,b>0,若algb=blga,则lgalgb=lgblga,即lgb•lga=lga•lgb成立,∴命题正确;
(2)中,直线y=x•tanα+b的斜率是k=tanα,当α∈[0,π)且α≠
π
2
时,倾斜角等于α,否则,命题不成立;
(3)中,在空间如果两条直线与同一条直线垂直,那么这两条直线不一定平行,也可能异面或相交,∴命题不成立;
(4)中,∵单位向量的模长是1,∴在平面内将单位向量的起点移到同一个点,终点的轨迹是一个半径为1的圆,命题正确;
∴正确的命题有(1)(4);
故答案为:(1)(4).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知a>0,且.设命题:函数在(0,+∞)上单调递减,命题:曲线与x轴交于不同的两点,如果是假命题,是真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列结论中正确的是(  )
A.若ac>bc,则a>bB.若a8>b8,则a>b
C.若a>b,c<0,则ac<bcD.若
a
b
,则a>b

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列判断正确的是(  )
A.棱柱中只能有两个面可以互相平行
B.底面是正方形的直四棱柱是正四棱柱
C.底面是正六边形的棱台是正六棱台
D.底面是正方形的四棱锥是正四棱锥

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设a,b,k是实数,二次函数f(x)=x2+ax+b满足:f(k-1)与f(k)异号,f(k+1)与f(k)异号.在以下关于f(x)的零点的命题中,真命题是(  )
A.该二次函数的零点都小于k
B.该二次函数的零点都大于k
C.该二次函数的两个零点之差一定大于2
D.该二次函数的零点均在区间(k-1,k+1)内

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若a,b,c为三条不同的直线,a⊆平面M,b⊆平面N,M∩N=c.
①若a,b是异面直线,则c至少与a,b中的一条相交;
②若a不垂直于c,则a与b一定不垂直;
③若ab,则必有ac;
④若a⊥b,a⊥c,则必有M⊥N.
其中正确的命题个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法正确的是 (     )
A.“”是“上为增函数”的充要条件[]
B.命题“使得”的否定是:“
C.“”是“”的必要不充分条件
D.命题p:“”,则p是真命题

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

命题“若,则”的否定是(   )
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知命题p:方程2x2+ax-a2=0在[-1,1]上有解;命题q:只有一个实数x0满足不等式x02+2ax0+2a≤0,若命题“p∨q”是假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案