精英家教网 > 高中数学 > 题目详情

【题目】在我国瓷器的历史上六棱形的瓷器非常常见,因为六,八是中国人的吉利数字,所以好多器都做成六棱形和八棱形,数学李老师有一个正六棱柱形状的笔筒,底面边长为6cm,高为18cm(底部及筒壁厚度忽略不计),一长度为cm的圆铁棒l(粗细忽略不计)斜放在笔筒内部,l的一端置于正六柱某一侧棱的展端,另一端置于和该侧棱正对的侧棱上.一位小朋友玩耍时,向笔筒内注水,恰好将圆铁棒淹没,又将一个圆球放在笔筒口,球面又恰好接触水面,则球的表面积为_____cm2.

【答案】

【解析】

根据铁棒与底面六边形的最长对角线、相对棱的部分长h构成直角三角形求出容器内水面的高度h,再利用球的半径和球被六棱柱体上底面截面圆的半径和球心到截面圆的距离构成直角三角形求出球的半径,即可计算球的表面积.

如图所示,

六棱柱笔筒的边长为6cm,高为18cm

铁棒与底面六边形的最长对角线、相対棱的部分长h构成直角三角形,

所以2,解得h14

所以容器内水面的高度为14cm

设球的半径为R,则球被六棱柱体上面截得圆的半径为r3,球心到截面圆的距离为R4

所以R2=(R42,解得R

所以球的表面积为4πcm2.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某中学举行的新冠肺炎防控知识闭卷考试比赛,总分获得一等奖、二等奖、三等奖的代表队人数情况如下表,该校政教处为使颁奖仪式有序进行,气氛活跃,在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取16人在前排就坐,其中一等奖代表队有6.

1)求二等奖代表队的男生人数;

2)从前排就坐的三等奖代表队员5人(23女)中随机抽取3人上台领奖,请求出只有一个男生上台领奖的概率;

3)抽奖活动中,代表队员通过操作按键,使电脑自动产生[22]内的两个均匀随机数xy,随后电脑自动运行如图所示的程序框图的相应程序,若电脑显示中奖,则代表队员获相应奖品;若电脑显示谢谢,则不中奖,求代表队队员获得奖品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD为矩形,平面PAD⊥平面ABCDPAPDEF分别为ADPB的中点.求证:

1EF//平面PCD

2)平面PAB平面PCD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学计划用他姓名的首字母,身份证的后4位数字(4位数字都不同)以及3个符号设置一个六位的密码.若必选,且符号不能超过两个,数字不能放在首位和末位,字母和数字的相对顺序不变,则他可设置的密码的种数为(

A.864B.1009C.1225D.1441

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,抛物线上的点到准线的最小距离为.

1)求抛物线的方程;

2)若过点作互相垂直的两条直线与抛物线交于两点,与抛物线交于两点,分别为弦的中点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线的参数方程:为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的普通方程;

2)过曲线上一点作直线与曲线交于两点,中点为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司A产品生产的投入成本x(单位:万元)与产品销售收入y(单位:十万元)存在较好的线性关系,下表记录了该公司最近8次该产品的相关数据,且根据这8组数据计算得到y关于x的线性回归方程为

x(万元)

6

7

8

11

12

14

17

21

y(十万元)

1.2

1.5

1.7

2

2.2

2.4

2.6

2.9

1)求的值(结果精确到0.0001),并估计公司A产品投入成本30万元后产品的销售收入(单位:十万元).

2)该公司B产品生产的投入成本u(单位:万元)与产品销售收入v(单位:十万元)也存在较好的线性关系,且v关于u的线性回归方程为

i)估计该公司B产品投入成本30万元后的毛利率(毛利率);

ii)判断该公司AB两个产品都投入成本30万元后,哪个产品的毛利率更大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的归家之一,某市为了制订合理的节水方案,对家庭用水情况进行了抽样调查,获得了某年100个家庭的月均用水量(单位:)的数据,将这些数据按照分成9组,制成了如图所示的频率分布直方图.

1)求图中的值,若该市有30万个家庭,试估计全市月均用水量不低于的家庭数;

2)假设同组中的每个数据都用该组区间的中点值代替,试估计全市家庭月均用水量的平均数;

3)现从月均用水量在的家庭中,先按照分层抽样的方法抽取9个家庭,再从这9家庭中抽取4个家庭,记这4个家庭中月均用水量在中的数量为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线,曲线为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系.

1)求的极坐标方程;

2)射线的极坐标方程为,若分别与交于异于极点的两点,求的最大值.

查看答案和解析>>

同步练习册答案