精英家教网 > 高中数学 > 题目详情
若两条直线都与同一平面成相等的角,则这两条直线相互平行
 
(判断对错)
考点:空间中直线与平面之间的位置关系
专题:空间位置关系与距离
分析:若两条直线都与同一平面成相等的角,则这两条直线相交、平行或异面.
解答: 解:若两条直线都与同一平面成相等的角,
则这两条直线相交、平行或异面,
故该命题是错误命题.
故答案为:错误.
点评:本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P(2,0)及圆C:x2+y2-6x+4y+4=0.
(1)若直线l过点P且与圆心C的距离为1,求直线l的方程;
(2)设过点P的直线ll与圆C交于M、N两点,当|MN|=4时,求以线段MN为直径的圆Q的方程;
(3)设直线ax-y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数y=f(x),对于任意的m、n∈(0,+∞)都有f(mn)=f(m)+f(n)成立,且当x>1时,f(x)<0.
(1)计算f(1);
(2)证明函数y=f(x)在(0,+∞)上时单调函数;
(3)比较f(
m+n
2
)与
f(m)+f(n)
2
的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,∠B=
π
3
,b=2
3
,求;
(1)三角形面积的最大值;
(2)a+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
b
c
满足
a
+2
b
+3
c
=
0
,且(
a
-2
b
)⊥
c
.若|
a
|=1,则|
b
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2,值域为{1,4}时定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x),g(x)在[a,b]上均可导,且f′(x)<g′(x),则当a<x<b时,有(  )
A、f(x)>g(x)
B、f(x)+g(a)<g(x)+f(a)
C、f(x)<g(x)
D、f(x)+g(b)<g(x)+f(b)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x∈[-1,2],求函数f(x)=4x-2x+1+1的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(1)(-3
3
8
)
2
3
+0.01-
1
2
-(
2
-1)-1+(
3
-
2
0
(2)log
2
2+log927+
1
4
log4
1
16

查看答案和解析>>

同步练习册答案