精英家教网 > 高中数学 > 题目详情

. 已知.若,则夹角的大小为             .


解析:

,又因为,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.
(Ⅰ)已知函数f(x)=x-2sinx.求证:y=x+2为曲线f(x)的“上夹线”.
(Ⅱ)观察下图:
精英家教网
根据上图,试推测曲线S:y=mx-nsinx(n>0)的“上夹线”的方程,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+bsinx,当x=
π
3
时,取得极小值
π
3
-
3

(1)求a,b的值;
(2)对任意x1x2∈[-
π
3
π
3
]
,不等式f(x1)-f(x2)≤m恒成立,试求实数m的取值范围;
(3)设直线l:y=g(x),曲线S:y=F(x),若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意x∈R都有g(x)≥F(x),则称直线l与曲线S的“上夹线”.观察下图:

根据上图,试推测曲线S:y=mx-nsinx(n>0)的“上夹线”的方程,并作适当的说明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•石家庄二模)已知球0夹在一个锐二面角a-l-β之间,与两个半平面分别相切于点A、B,若AB=
3
,球心0到该二面角的棱l的距离为2,则球0的体积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下面给出的几个命题中:
①若平面α∥平面β,AB,CD是夹在α,β间的线段,若AB∥CD,则AB=CD;
②a,b是异面直线,b,c是异面直线,则a,c一定是异面直线;
③过空间任一点,可以做两条直线和已知平面α垂直;
④平面α∥平面β,P∈α,PQ∥β,则PQ?α;
⑤若点P到三角形三个顶点的距离相等,则点P在该三角形所在平面内的射影是该三角形的外心;
⑥a,b是两条异面直线,P为空间一点,过P总可以作一个平面与a,b之一垂直,与另一个平行.
其中正确的命题是
①④⑤
①④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•佛山一模)已知函数f(x)=ax+bsinx,当x=
π
3
时,f(x)取得极小值
π
3
-
3

(1)求a,b的值;
(2)设直线l:y=g(x),曲线S:y=f(x).若直线l与曲线S同时满足下列两个条件:
①直线l与曲线S相切且至少有两个切点;
②对任意x∈R都有g(x)≥f(x).则称直线l为曲线S的“上夹线”.试证明:直线l:y=x+2为曲线S:y=ax+bsinx“上夹线”.

查看答案和解析>>

同步练习册答案