精英家教网 > 高中数学 > 题目详情

定义在R上的偶函数y=f(x)满足f(x+2)=-f(x)对所有实数x都成立,且在[-2,0]上单调递增,数学公式则下列成立的是


  1. A.
    a>b>c
  2. B.
    b>c>a
  3. C.
    b>a>c
  4. D.
    c>a>b
B
分析:由已知中定义在R上的偶函数y=f(x)满足f(x+2)=-f(x)对所有实数x都成立,且在[-2,0]上单调递增,我们易得到函数是以4为周期的周期函数,进而将三个自变量转换到同一单调区间上,进而根据函数的单调性,得到结论.
解答:∵函数y=f(x)为偶函数,
又∵f(x+2)=-f(x)对所有实数x都成立,
∴函数以4为周期的周期函数
又∵函数f(x)在[-2,0]上单调递增
∴函数f(x)在[0,2]上单调递减


∴b>c>a
故选B
点评:本题考查的知识点是函数单调性与函数周期性的综合应用,其中解答本题的关键是将三个自变量利用函数的周期性和奇偶性转化到同一个单调区间.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

17、定义在R上的偶函数y=f(x)满足:
①对任意x∈R都有f(x+2)=f(x)+f(1)成立;
②f(0)=-1;
③当x∈(-1,0)时,都有f(x)<0.
若方程f(x)=0在区间[a,3]上恰有3个不同实根,则实数a的取值范围是
(-3,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数y=f(x)满足:①对x∈R都有f(x+6)=f(x)+f(3);②当x1,x2∈[0,3]且x1≠x2时,都有
f(x1)-f(x2)x1-x2
>0
,若方程f(x)=0在区间[a,8-a]上恰有3个不同实根,实数a的取值范围是
(-7,-3)
(-7,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数y=f(x)在(-∞,0]上递增,函数f(x)的一个零点为-
1
2
,求满足f(log
1
9
x)≥0的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数y=f(x)满足f(x+2)=f(x),且当x∈(0,1]时单调递增,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数y=f (x)满足f ( x+2 )=-f (x)对所有实数x都成立,且在[-2,0]上单调递增,a=f(
3
2
),b=f(
7
2
),c=f(log 
1
2
8),则a,b,c的由大到小顺序是(用“>”连 结)
 

查看答案和解析>>

同步练习册答案