精英家教网 > 高中数学 > 题目详情

设函数 
(1)当时,求的单调区间;
(2)若当恒成立,求实数的取值范围。

(1)的单调递增区间为的单调递减区间为
(2)

解析试题分析:(1)将代入,求导即可 (2)注意恒大于等于0,故只需对任意恒成立即可 接下来就利用导数研究函数 
试题解析:(1)当时,
 
,得;令,得
的单调递增区间为
的单调递减区间为                            6分
(2)因为对任意,设 
    
时,恒成立, 符合题意   9分
时,由;由
所以上是减函数,在上是增函数
,故不符合题意            12分
综上所述的取值范围是            13分
考点:1、导数的应用;2、不等关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)设(其中的导函数),求的最大值;
(2)求证: 当时,有
(3)设,当时,不等式恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数),
(Ⅰ)证明:当时,对于任意不相等的两个正实数,均有成立;
(Ⅱ)记,若上单调递增,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,如果函数仅有一个零点,求实数的取值范围;
(2)当时,试比较与1的大小;
(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,某自来水公司要在公路两侧排水管,公路为东西方向,在路北侧沿直线排水管,在路南侧沿直线排水管(假设水管与公路的南,北侧在一条直线上且水管的大小看作为一条直线),现要在矩形区域ABCD内沿直线EF将接通.已知AB = 60m,BC = 60m,公路两侧排管费用为每米1万元,穿过公路的EF部分的排管费用为每米2万元,设EF与AB所成角为.矩形区域内的排管费用为W.

(1)求W关于的函数关系式;
(2)求W的最小值及相应的角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数时,都取得极值.
(1)求的值;
(2)若,求的单调区间和极值;
(3)若对都有恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)求的单调区间;
(II)若存在使求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的单调递减区间;
(2)若在区间上的最大值为,求它在该区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数的图象,且点M到边OA距离为

(1)当时,求直路所在的直线方程;
(2)当为何值时,地块OABC在直路不含泳池那侧的面积取到最大,最大值是多少?

查看答案和解析>>

同步练习册答案