精英家教网 > 高中数学 > 题目详情
16.已知数列{an},a1=1,且对n∈N*,an+1=$\frac{n{a}_{n}+2(n+1)}{n+2}$
(1)求数列{an}的通项公式;
(2)若bn=$\frac{1}{[n-(-1)^{n}]{a}_{n}}$,证明:b1+b2+…+bn<2.

分析 (1)通过计算出前几项的值猜想通项公式,利用数学归纳法证明即可;
(2)通过(1)可知bn=$\frac{1}{2n+1}$•$\frac{3}{n-(-1)^{n}}$,利用放缩放缩法可知b2n-1+b2n<$\frac{3}{4}$($\frac{1}{n-2}$-$\frac{1}{n-1}$)(n≥3),进而并项相加即得结论.

解答 (1)解:依题意,a2=$\frac{{a}_{1}+2(1+1)}{1+2}$=$\frac{1+4}{3}$=$\frac{5}{3}$,
a3=$\frac{2{a}_{2}+2(2+1)}{2+2}$=$\frac{2•\frac{5}{3}+6}{4}$=$\frac{7}{3}$,
a4=$\frac{3{a}_{3}+2(3+1)}{3+2}$=$\frac{3•\frac{7}{3}+8}{5}$=3=$\frac{9}{3}$,
猜想:an=$\frac{2n+1}{3}$.
下面用数学归纳法来证明:
①当n=1时,显然成立;
②假设当n=k(k≥2)时,有ak=$\frac{2k+1}{3}$,
则ak+1=$\frac{k{a}_{k}+2(k+1)}{k+2}$=$\frac{\frac{k(2k+1)}{3}+2(k+1)}{k+2}$=$\frac{(2k+3)(k+2)}{3(k+2)}$=$\frac{2(k+1)+1}{3}$,
即当n=k+1时,命题也成立;
由①、②可知,an=$\frac{2n+1}{3}$;
(2)证明:由(1)可知bn=$\frac{1}{[n-(-1)^{n}]{a}_{n}}$=$\frac{1}{2n+1}$•$\frac{3}{n-(-1)^{n}}$,
∴b1=$\frac{1}{2}$,b2=$\frac{3}{5}$,b3=$\frac{3}{28}$,${b}_{4}=\frac{1}{9}$,${b}_{5}=\frac{1}{22}$,${b}_{6}=\frac{3}{65}$,
∵b2n-1+b2n=$\frac{1}{4n-1}$•$\frac{3}{2n}$+$\frac{1}{4n+1}$•$\frac{3}{2n-1}$
<6($\frac{1}{4n-2}$•$\frac{1}{2n-2}$)
<$\frac{3}{4}$($\frac{1}{n-2}$-$\frac{1}{n-1}$)(n≥3),
∴b1+b2+…+b2n-1+b2n<$\frac{1}{2}$+$\frac{3}{5}$+$\frac{3}{4}$(1-$\frac{1}{n-1}$)<2,
∴b1+b2+…+bn<2.

点评 本题考查数列的通项及前n项和,考查数学归纳法,考查放缩法,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.求下列函数的值域:y=2x-$\sqrt{1-x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)已知:a是整数,2能整除a2,求证:2能整除a;
(2)已知a>0,b>0,求证:$\frac{a+b}{2}$≥$\sqrt{ab}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.抛物线x2=-$\frac{1}{8}$y的准线方程是(  )
A.x=$\frac{1}{16}$B.y=$\frac{1}{16}$C.y=$\frac{1}{32}$D.x=$\frac{1}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.柳家为家里的小朋友萌萌订了一份鲜奶,牛奶公司的员工可能在早上6:30一7:30之间将鲜奶送到他家,萌萌早上上学的时间在7:00一7:40之间,则萌萌在上学前能得到鲜奶的概率为$\frac{13}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设两圆C1,C2都和两坐标轴相切,且都过点(3,2),则两圆心的距离C1C2=4$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知F1、F2是双曲线的两焦点,以线段F1F2为边作正三角形MF1F2,MF1的中点A在双曲线上,则双曲线的离心率是$\sqrt{3}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知$f(x)={x^{2005}}+a{x^3}-\frac{b}{x}-8$,f(-2)=10,则f(2)=-26.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设有关于x的一元二次方程x2+2ax+b2=0.
(Ⅰ)若a是从1,2,3三个数中任取的一个数,b是从1,2两个数中任取的一个数,求上述方程在(-4,0)内有两个不等实根的概率.
(Ⅱ)若a是从区间[1,3]任取的一个数,b是从区间[1,2]任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

同步练习册答案